Year 11 Chemistry

Bonding Assignment 1

1. a) Covalentb) Metallicc) Covalent

2.

- a) Electricity is moving charges; the ions are only free to move when melted or dissolved.
- b) Electricity is moving charges; the electrons are delocalised and so free to move at all times.
- 3.
- a) The ability of an element to attract electrons during bonding.
- b) Primary is between atoms, secondary is between molecules.
- c) Hydrogen bonding is strong dipole-dipole bonding where at least one dipole has a hydrogen.

4. (i) ionic, (ii) metallic, (iii) covalent, (iv) covalent(i) NaI and (ii) Na can not form molecules. Only covalent substances can form molecules.

6.

5.

a)
$$O = O$$

linear
b) $\overset{\delta^-}{O} = \overset{\delta^+}{C} = \overset{\delta^-}{O}$
linear
c) $\overset{\delta^-}{S} \overset{\delta^-}{\bullet}$
d) $\overset{\delta^-}{\bullet} \overset{\delta^-}{\bullet}$

c)
$$\delta^{+}S$$

 $\delta^{+}H$ $H\delta^{+}$ $+$
 v -shaped
c) $\delta^{+}C$
 $\delta^{-}C$
 $\delta^{+}C$
 $\delta^{-}C$
 $\delta^{+}C$
 $\delta^{-}C$
 $\delta^{+}C$
 $\delta^{-}C$
 $\delta^{+}C$
 $\delta^{-}C$
 $\delta^{$

- tetrahedral
- 7. Both are ionic substances. For KF there is the attraction between K^+ and F^- ions, whereas for CaF_2 there is the attraction between Ca^{2+} and F^- ions. In the case of CaF_2 there is more charge, so the attraction will be stronger, so the melting point will be higher.
- 8. Going down the table, the electronegativity of the element bonded to F decreases. That means the electronegativity difference between F and the other element increases. This means the bonds will be more polar, so the molecules will be more polar. They will therefore have stronger attraction between them, so a higher boiling point.