Bonding Assignment 2

 A sample of covalent molecular substance is held together by secondary bonding, which is weak. A sample of a covalent molecular substance is held together by primary bonding, which is strong. The covalent network substance would probably be a solid, and the covalent molecular would probably be a liquid or gas. (Or you could measure their melting points – the covalent molecular would be lower).

2.

- a) Only calcium
- b) Calcium and salt
- 3.
- a) A polar bond is a covalent bond in which one end is partially negative and one partially positive (the electrons are being shared unequally).

It occurs because the two bonded elements have different electronegativities.

- b) Its bonds do not share a common direction, so they cancel out, so the molecule is non-polar overall.
- c)

і́sі і́о́ Н Н Н Н Н

Both are polar molecules so both would have dipole-dipole attractions between their molecules. H_2O has more polar bonds since the electronegativity difference between O and H is higher than between S and H, so H_2O would exhibit stronger intermolecular forces.

 $(H_2O$ would exhibit hydrogen bonding which is stronger than dipole-dipole forces).

- 4. Secondary, since it acts between molecules.
- 5.
 - a) ×N∗siN∶

• N = N linear dispersion forces

b) $\dot{O} \approx \dot{N} \approx \dot{O} = \delta \dot{N} = \delta \dot{O} = \delta \dot{$

v-shaped dipole-dipole forces

6.

Covalent

Two nonmetal atoms share electrons to become stable.

lonic

Metal atoms lose electrons and nonmetal atoms gain electrons, leading to positive and negative ions. Opposite charges attract, holding the ions together in a lattice.

Either:

- a diagram showing the atoms losing/gaining to become ions, or
- a diagram showing ions in a lattice

Metallic

Metal atoms' electrons delocalise and are free to move around a lattice of the metal ions.

