Motion Equation Solutions
 NOTE: There are often other ways of finding the answer.

1. Find the displacement after 2.0 seconds of an object thrown straight up into the air at $10 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
& v_{0}=10 \mathrm{~ms}^{-1} \quad t=2.0 \mathrm{~s} \quad a=-9.8 \mathrm{~ms}^{-2} \quad s=? \\
& s
\end{aligned}
$$

The object's displacement is 0.40 m upwards (2 s.f.)
2. An object is in motion along a flat horizontal plane at $5.2 \mathrm{~ms}^{-1}$. How far does it travel in 2.5 seconds?
$v_{0}=5.2 \mathrm{~ms}^{-1} \quad t=2.5 \mathrm{~s} \quad a=0 \mathrm{~ms}^{-2} \quad s=$?
$s=v_{0} t \quad$ (since there is no acceleration)

$$
=5.2 \times 2.5
$$

$$
=13
$$

The object has travelled a distance of 13 m (2 s.f.)
3. Find the velocity of an object 1.5 seconds after it is dropped in midair.

$$
\begin{aligned}
& v_{0}=0 \mathrm{~ms}^{-1} \quad t=1.5 \mathrm{~s} \quad a=-9.8 \mathrm{~ms}^{-2} \quad v=? \\
& \begin{aligned}
v & =v_{0}+a t \\
& =0+(-9.8)(1.5) \\
& =-14.7
\end{aligned}
\end{aligned}
$$

The object's velocity is $15 \mathrm{~ms}^{-1}$ downwards (2 s.f.)
4. An object is thrown straight up at $17 \mathrm{~ms}^{-1}$. Calculate its velocity after 3.1 seconds.

$$
\begin{aligned}
& v_{0}=17 \mathrm{~ms}^{-1} \quad t=3.1 \mathrm{~s} \quad a=-9.8 \mathrm{~ms}^{-2} \quad v=? \\
& v
\end{aligned} \begin{aligned}
& =v_{0}+a t \\
& \\
& =17+(-9.8)(3.1) \\
& \\
& =-13.38
\end{aligned}
$$

The object's velocity is $13 \mathrm{~ms}^{-1}$ downwards (2 s.f.)
5. Find the displacement of the object in part 4.

$$
\begin{aligned}
v_{0} & =17 \mathrm{~ms}^{-1} \quad t=3.1 \mathrm{~s} \quad a=-9.8 \mathrm{~ms}^{-2} \quad v=13 \mathrm{~ms}^{-1} \quad s=? \\
s & =v_{0} t+\frac{1}{2} a t^{2} \\
& =17 \times 3.1+\frac{1}{2}(-9.8)\left(3.1^{2}\right) \\
& =5.611
\end{aligned}
$$

The object's displacement is 5.6 m upwards (2 s.f.)
6. Find the maximum height of an object launched straight up from ground level at $16 \mathrm{~ms}^{-1}$.
$v_{0}=16 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad v=0 \mathrm{~ms}^{-1} \quad s=$?
$v^{2}=v_{0}{ }^{2}+2 a s$
$\therefore 2 a s=v^{2}-v_{0}{ }^{2}$
$\therefore s=\frac{v^{2}-v_{0}{ }^{2}}{2 a}$
$=\frac{\left(0^{2}\right)-\left(16^{2}\right)}{2(-9.8)}$
$=\frac{-256}{-19.6}$

$$
=13.06
$$

The object's maximum height is 13 m (2 s.f.)
7. Find the time of flight of an object dropped from 10 m above the ground.

$$
\begin{aligned}
& s=-10 \mathrm{~m} \quad v_{0}=0 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad t=? \\
& s=v_{0} t+\frac{1}{2} a t^{2} \\
& \therefore s=\frac{1}{2} a t^{2} \quad\left(\text { since } v_{0}=0\right) \\
& \therefore \mathrm{t}^{2}=\frac{s}{\frac{1}{2} a} \\
& \begin{aligned}
\therefore t & =\sqrt{\frac{s}{\frac{1}{2} a}} \\
& =\sqrt{\frac{-10}{\frac{1}{2}(-9.8)}} \\
& =1.429
\end{aligned}
\end{aligned}
$$

The object's time of flight is 1.4 s (2 s.f.)
8. An object thrown up at $4.8 \mathrm{~ms}^{-1}$ falls to the ground 2 m below the starting height. What was the speed of the object just as it hit the ground?

$$
\begin{aligned}
s & =-2 \mathrm{~m} \quad v_{0}=4.8 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad v=? \\
v^{2} & =v_{0}^{2}+2 a s \\
v & =\sqrt{v_{0}^{2}+2 a s} \\
& =\sqrt{4.8^{2}+2(-9.8)(-2)} \\
& =7.89
\end{aligned}
$$

The object's speed is $7.9 \mathrm{~ms}^{-1}$ (2 s.f.)
9. Find the time of flight of the object in part 8 .

$$
\begin{aligned}
& s=-2 \mathrm{~m} \quad v_{0}=4.8 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad v=-7.9 \mathrm{~ms}^{-1} \quad t=? \\
& v=v_{0}+a t \\
& \therefore a t=v-v_{0} \\
& \therefore t=\frac{v-v_{0}}{a} \\
& \quad=\frac{-7.9-4.8}{-9.8} \\
& \quad=1.29
\end{aligned}
$$

The object's time of flight was 1.3 s (2 s.f.)
10. Find the maximum height of the object in parts 8 and 9.

$$
\begin{aligned}
& v_{0}=4.8 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad v=0 \mathrm{~ms}^{-1} \quad s=? \\
& v^{2}=v_{0}^{2}+2 a s \\
& \therefore 2 a s=v^{2}-v_{0}^{2} \\
& \therefore s=\frac{v^{2}-v_{0}^{2}}{2 a} \\
& \quad=\frac{\left(0^{2}\right)-\left(4.8^{2}\right)}{2(-9.8)} \\
& \quad=1.176
\end{aligned}
$$

The object's maximum height was 1.2 m (2 s.f.)

