Year 11 Physics Assignment Atoms and Nuclei

1.	Calculate the maximum kinetic energy of the electrons emitted from a metal (with a work function of 0.51 eV) being hit by photons of wavelength 5.4×10^{-7} m. /3
2.	Calculate the de Broglie wavelength of an electron (mass 9.11×10^{-31} kg) travelling at a speed of 9.7×10^6 ms ⁻¹ . /2
3.	 (a) Calculate the frequency of light required to excite an atom from the -0.88 eV level to the -0.54 eV level. (b) Draw this transition on an energy level diagram. (c) If this atom returns to the ground state by two transitions (first to the -1.5 eV level and then the -13.6 eV level) calculate the frequencies of the two photons emitted. (d) Draw the frequencies of light from 3 (c) on a line emission spectrum.
4.	An atom transitions from the -1.5 eV level to the -3.4 eV level. State and explain whether energy was released or absorbed. /2
5.	Describe what the ground state of an atom is. /1
6.	List four types of radioactive decay and state what kind of radioactive nucleus (e.g. one with too many protons) would undergo each. /4
7.	Explain how a chain reaction takes place. Suggest a way you could control it. /2
8.	 (a) State the difference between nuclear fission and nuclear fusion. /1 (b) Explain why you would expect fusion to be easier to achieve with hydrogen nuclei than uranium nuclei. /2
9.	Complete the following nuclear reaction equations: (a) ${}^{4}_{2}$ He + ${}^{9}_{4}$ Be $\longrightarrow {}^{12}_{6}$ C + ? (b) ${}^{27}_{13}$ Al + ${}^{1}_{0}$ n $\longrightarrow {}^{1}_{1}$ H + ? (c) ${}^{241}_{94}$ Pu + ? $\longrightarrow {}^{242}_{94}$ Pu (d) ${}^{226}_{94}$ D = ${}^{222}_{94}$ D = 0

(d) $^{226}_{88}$ Ra $\longrightarrow ^{222}_{86}$ Rn + ?

/4

TOTAL /34