Year 11 Physics Assignment
Work, Energy and Momentum 1

1. Calculate the kinetic energy of Jehu's chariot if its total mass (including Jehu) is 125 kg and it is moving at a speed of $11.9 \mathrm{~ms}^{-1}$.

2. A 0.20 kg set of lab weights is lifted to a height of 1.0 m .
a) Calculate the much work done on the weights.
b) State the gravitational potential energy of the lifted weights, and state a reason why.
c) Draw a diagram of the lab weights falling. At the beginning, middle and end of its fall, write labels stating the potential and kinetic energy of the weights
3. A crate is being lifted directly upwards a height of 5 m by two cables as shown below:
$34^{\circ} \cdot 34^{\circ}$

Given that the tension in each cable is 345 N , calculate the work done by each cable and therefore the total work done on the crate.
4. A ball of mass 2.1 kg bounces off a wall without a change in speed, as shown below.

a) Calculate the ball's change in velocity 13
b) Hence calculate the ball's change in momentum $\quad 12$
c) Hence calculate the force the wall exerts on the ball, if the collision lasts 0.10 seconds
d) State the force the ball exerts on the wall
5. If a $8.2 \times 10^{3} \mathrm{~kg}$ train moving at $2.2 \mathrm{~ms}^{-1}$ reverses into and connects to a stationary $3.0 \times 10^{3} \mathrm{~kg}$ rail car. Calculate the final speed of the train.

