1. $K=\frac{1}{2} m v^{2}=\frac{1}{2} \times 125 \times 11.9^{2}=8.85 \times 10^{3} \mathrm{~J}$ (3 s.f.)
2. a) First calculate the weight F of the weights.

$$
\begin{aligned}
& F=m g=0.20 \times 9.8=1.96 \mathrm{~N} \\
& W=F s=1.96 \times 1.0=2.0 \mathrm{~J}(2 \text { s.f. })
\end{aligned}
$$

b) 2.0 J because of conservation of energy (the amount of work done is amount of potential energy gained)
3.
a) $\vec{F}=\frac{\Delta \vec{p}}{\Delta t}$
$\therefore \Delta \vec{p}=\vec{F} \Delta t=150 \times 1.02=153 \mathrm{kgms}^{-1}$
$\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}$
$\therefore \vec{p}_{f}=\Delta \vec{p}+\vec{p}_{i}=153+0=153 \mathrm{kgms}^{-1}$
The final momentum of the astronaut is $153 \mathrm{kgms}^{-1}$ away from the spacecraft (3 s.f.)
b) The final momentum of the spacecraft is $153 \mathrm{kgms}^{-1}$ away from the astronaut (3 s.f.)
c) $p=m v \quad$ \{considering only magnitudes\}
$\therefore v=\frac{p}{m}=\frac{153}{90}=1.7 \mathrm{~ms}^{-1}$ (2 s.f.)
d) $p=m v \quad$ \{considering only magnitudes $\}$
$\therefore v=\frac{p}{m}=\frac{153}{1600}=0.0956 \mathrm{~ms}^{-1}$ (3 s.f.)
4.
a)

The change in velocity of the ball is $5.0 \mathrm{~ms}^{-1}$ away from the wall.
b) $\vec{p}=m \vec{v}$
\therefore The change momentum of the ball is $2.1 \times 5.0=11 \mathrm{~kg} \mathrm{~ms}^{-1}$ (2 s.f.) away from the wall.
c) $\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{11}{0.10}=110 \mathrm{~N}(2$ s.f. $)$ away from the wall
d) 110 N (2 s.f.) away from the ball.
5. According to conservation of momentum, final $=$ initial.
$\therefore m_{i} v_{i}=m_{f} v_{f}$
$\therefore v_{f}=\frac{m_{i} v_{i}}{m_{f}}$
$\therefore v_{f}=\frac{8.2 \times 10^{3} \times 2.2}{8.2 \times 10^{3}+3 \times 10^{3}}=\frac{18040}{11200}=1.61 \mathrm{~ms}^{-1}$
The final speed of the train is $1.6 \mathrm{~ms}^{-1}$ (2 s.f.)

6. Q4 (Ball)

Initial Kinetic energy: Final Kinetic energy:
$K=1 / 2 m v^{2}=0.5 \times 2.1 \times 2.5^{2}=6.6 \mathrm{~J}$
$K=1 / 2 m v^{2}=0.5 \times 2.1 \times 2.5^{2}=6.6 \mathrm{~J}$
Change in kinetic energy $=0 \mathrm{~J} \quad \therefore$ Elastic collision as kinetic energy is conserved
Q5 (Train)
Initial Kinetic energy:
Final Kinetic energy:
$K=1 / 2 m v^{2}$
$K=1 / 2 m v^{2}$
$\therefore K=0.5 \times 8.2 \times 10^{3} \times 2.2^{2}$
$\therefore K=0.5 \times 11200 \times 1.61^{2}$
$\therefore K=19844 \mathrm{~J}$
$\therefore K=14516 \mathrm{~J}$
Change in kinetic energy $=-5328 \mathrm{~J} \quad \therefore$ Not elastic collision as kinetic energy is lost.

