Vector Addition Solutions

(These are examples of working; you could get to the same answer using different methods)
1.

$$
\begin{aligned}
& s=\sqrt{5^{2}+8^{2}}=9.4 \mathrm{~km} \\
& \theta=\tan ^{-1}\left(\frac{8}{5}\right)=58^{\circ}
\end{aligned}
$$

The displacement of the car is 9.4 km at 58° east of south
2.
(a) First calculate the components:

Total north/south component: $2+2.8-3=1.8 \mathrm{~km}$ north Total east/west component: 2.8 km east

Now combine the components:

$s=\sqrt{1.8^{2}+2.8^{2}}=3.4 \mathrm{~km}$
$\theta=\tan ^{-1}\left(\frac{2.8}{1.8}\right)=57^{\circ}$
The displacement of the cyclist is 3.4 km at 57° east of north
(b) $2.0+4.0+3.0=9.0 \mathrm{~km}$
3.
(a) First convert speed and time to distance travelled:
$20 \mathrm{kmh}^{-1}$ for 1.5 hours: $s=v t=20 \times 1.5=30 \mathrm{~km}$
$30 \mathrm{kmh}^{-1}$ for 0.5 hours: $s=v t=30 \times 0.5=15 \mathrm{~km}$

Total north/south component: $30+13=43 \mathrm{~km}$ north Total east/west component: 7.5 km east

Now combine components:

The displacement of the cyclist is 44 km at 9.9° east of north
(b) $v=\frac{s}{t}=\frac{44}{2}=22 \mathrm{~km} \mathrm{~h}^{-1}$

The cyclist's average velocity is $22 \mathrm{~km} \mathrm{~h}^{-1}$ at 9.9° east of north
4.
(a)

$v=\sqrt{1000^{2}+160^{2}}=1013 \mathrm{~km} \mathrm{~h}^{-1}$
$\theta=\tan ^{-1}\left(\frac{160}{1000}\right)=9.1^{\circ}$
The velocity of the jet is $1013 \mathrm{~km} \mathrm{~h}^{-1}$ at 9.1° west of north
(b) $s=v t=1013 \times 3=3038 \mathrm{~km}$

The jet's displacement would be $3038 \mathrm{~km}, 9.1^{\circ}$ west of north
(c) The jet has been blown by a $160 \mathrm{~km} \mathrm{~h}^{-1}$ wind for 3 hours, so:
$s=v t=160 \times 3.0=480 \mathrm{~km}$
The jet's displacement would be 480 km (2 s.f.) west of where it would be without wind.
5.
(a)
$v=\sqrt{6.5^{2}+2.5^{2}}=7.0 \mathrm{~km} \mathrm{~h}^{-1}$
$\theta=\tan ^{-1}\left(\frac{2.5}{6.5}\right)=21^{\circ}$
The velocity of the boat is $7.0 \mathrm{~km} \mathrm{~h}^{-1}$ at 21° west of north
(b) He will need to cancel out the current, so have a eastward component of $2.5 \mathrm{~km} \mathrm{~h}^{-1}$.

He could do this by heading 21° east of north .
(c) He has a component across the river of $6.5 \mathrm{~km} \mathrm{~h}^{-1}$, and 120 m is 0.12 km .
$t=\frac{s}{v}=\frac{0.12}{6.5}=0.018$ hours

