Vector Addition Solutions

(These are examples of working; you could get to the same answer using different methods)

The displacement of the car is 9.4 km at 58° east of south

- 2.
- (a) First calculate the components:

Total north/south component: 2 + 2.8 - 3 = 1.8 km north Total east/west component: 2.8 km east

Now combine the components:

The displacement of the cyclist is 3.4 km at 57° east of north

(b) 2.0 + 4.0 + 3.0 = 9.0 km

(a) First convert speed and time to distance travelled: 20 kmh⁻¹ for 1.5 hours: $s = vt = 20 \times 1.5 = 30$ km 30 kmh⁻¹ for 0.5 hours: $s = vt = 30 \times 0.5 = 15$ km

Total north/south component: 30+13 = 43 km north Total east/west component: 7.5 km east

Now combine components:

3.

The displacement of the cyclist is 44 km at 9.9° east of north

(b)
$$v = \frac{s}{t} = \frac{44}{2} = 22 \text{ km h}^{-1}$$

The cyclist's average velocity is 22 km h^{-1} at 9.9° east of north

The velocity of the jet is 1013 km h⁻¹ at 9.1° west of north

(b) $s = vt = 1013 \times 3 = 3038$ km

The jet's displacement would be 3038 km, 9.1° west of north

(c) The jet has been blown by a 160 km h⁻¹ wind for 3 hours, so: $s = vt = 160 \times 3.0 = 480$ km

The jet's displacement would be 480 km (2 s.f.) west of where it would be without wind.

5. (a) 2.5 km h⁻¹

$$v = \sqrt{6.5^2 + 2.5^2} = 7.0 \text{ km h}^{-1}$$

 $\theta = \tan^{-1} \left(\frac{2.5}{6.5}\right) = 21^\circ$

The velocity of the boat is 7.0 km h⁻¹ at 21° west of north

- (b) He will need to cancel out the current, so have a eastward component of 2.5 km h^{-1} . He could do this by heading 21° east of north .
- (c) He has a component across the river of 6.5 km h⁻¹, and 120 m is 0.12 km. $t = \frac{s}{v} = \frac{0.12}{6.5} = 0.018 \text{ hours}$

4.