\qquad
Analytical Techniques
Assignment 1

1. Calculate the concentration of 1.15 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in 100 mL
(a) in $\mathrm{g} \mathrm{L}^{-1}$
(b) in $\mathrm{mol} \mathrm{L}^{-1}$
(c) in $\% \mathrm{w} / \mathrm{v}$
(d) in ppm
2. A one-litre sample of wine was found to contain $5 \times 10^{-5} \mathrm{moles}$ of sulfur dioxide.

Calculate the concentration in ppm in the sample of wine.
3. $\quad 31.0 \mathrm{~g}$ of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right)$ is dissolved in 100 mL of water.
(a) Calculate the molar concentration of the solution.
(b) Calculate the volume of water that needs to be added to the solution to dilute it to a concentration of $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$.
4. Complete the table below:

Species	mol L-	$\mathbf{g ~ L}^{-1}$	\% w/v	$\mathbf{m g ~ L}^{-1}$	ppm	ppb
Na^{+}	7.0×10^{-3}					
NO_{3}^{-}		50.0				
CN^{-}				7.0×10^{-5}		
Hg^{2+}					2×10^{-3}	

5. The National Health and Medical and Medical Research Council of Australia has set the following concentration values as being maximum acceptable levels for drinking water. Fluoride ions $\quad 1.5 \mathrm{ppm}$
Arsenic $\quad 7 \mathrm{ppb}$

Convert these values to g^{-1}.
6. Calculate the mass of sodium chloride necessary to make up 500 mL of a $5 \% \mathrm{w} / \mathrm{v}$ solution.

