Stage 2 Chem Analytical Techniques Assignment 2 SOLUTIONS

1. (a)
(i) volumetric pipette

NOTE 3 marks not written on sheet are for sig
(ii) volumetric burette figs
(b) a solution of known concentration
(c) the first permanent colour change (in this case from yellow to orange)
(d) 23.9, First titre ignored as it is not concordant (it does not agree closely enough with the others)
(e) $\mathrm{V}_{\text {HCI }}=0.0239 \mathrm{~L} \quad \mathrm{CHCl}=0.0934 \mathrm{~mol} \mathrm{~L}^{-1} \quad \therefore \mathrm{n}_{\text {HCI }}=0.00223 \mathrm{~mol}$
$\mathrm{V}_{\mathrm{Ca}(\mathrm{OH}) 2}=0.0200 \mathrm{~L} \quad \mathrm{C}_{\mathrm{Ca}(\mathrm{OH}) 2}=$?
Half as much $\mathrm{Ca}(\mathrm{OH})_{2}$ as HCl according to equation, so $\mathrm{n}_{\mathrm{Ca}(\mathrm{OH}) 2}=0.00112 \mathrm{~mol}$
$C_{\mathrm{Ca}(\mathrm{OH})_{2}}=\frac{n_{\mathrm{Ca}(\mathrm{OH})_{2}}}{V_{\mathrm{Ca}(\mathrm{OH})_{2}}}=\frac{0.00112}{0.0200}=0.0558 \mathrm{~mol} \mathrm{~L}^{-1}$
2. (a) Dectuple the volume, i.e. add nine times the original volume of water.
(b)
(i) $\mathrm{V}_{\text {HCI }}=0.0212 \mathrm{~L} \quad \mathrm{C}_{\text {HCI }}=0.1015 \mathrm{~mol} \mathrm{~L}^{-1} \quad \therefore \mathrm{n}_{\text {HCI }}=0.00215 \mathrm{~mol}$
$\mathrm{V}_{\mathrm{NH} 3}=0.0200 \mathrm{~L} \quad \mathrm{C}_{\mathrm{NH} 3}=$?
Same no. moles NH_{3} as HCl according to equation, so $\mathrm{n}_{\mathrm{NH}}=0.00215 \mathrm{~mol}$

$$
C_{\mathrm{NH}_{3}}=\frac{n_{\mathrm{NH}_{3}}}{V_{\mathrm{NH}_{3}}}=\frac{0.00215}{0.0200}=0.108 \mathrm{~mol} \mathrm{~L}^{-1}
$$

(ii) $1.08 \mathrm{~mol} \mathrm{~L}^{-1}$
(iii) $\quad \mathrm{M}=17.03 \mathrm{~g} \mathrm{~mol}^{-1} \therefore \mathrm{C}=18.4 \mathrm{~g} \mathrm{~L}^{-1}$
(c) $\mathrm{C}=1.84 \% \mathrm{w} / \mathrm{v}$
3. (a)
(i) volumetric pipette
(ii) volumetric burette
(b) First permanent pink colour (from colourless)
(c) An acid, so that hydrogen ions are present for the correct reaction to occur.
(d) 24.6 mL
(e) $\mathrm{V}_{\text {Mnо4 }^{-}}=0.0246 \mathrm{~L} \quad \mathrm{C}_{\text {Mnо4 }}=0.200 \mathrm{~mol} \mathrm{~L}^{-1} \quad \therefore \mathrm{n}_{\text {Mnо4 }}=0.00492 \mathrm{~mol}$
$\mathrm{V}_{\text {H2O2 }}=0.0200 \mathrm{~L} \quad \mathrm{C}_{\text {H2O2 }}=$?
$5 / 2$ times moles $\mathrm{H}_{2} \mathrm{O}_{2}$ compared to $\mathrm{MnO}_{4}{ }^{-}$according to equation, so $\mathrm{n}_{\mathrm{H} 202}=0.0123 \mathrm{~mol}$
$C_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{n_{\mathrm{H}_{2} \mathrm{O}_{2}}}{V_{\mathrm{H}_{2} \mathrm{O}_{2}}}=\frac{0.0123}{0.0200}=0.615 \mathrm{~mol} \mathrm{~L}^{-1}$
4.
(a) 0.00141 mol
(b) Mole ratio $1: 1$ therefore 0.00141 mol
(c) $x 4$ (since $100 / 25=4)=0.00564 \mathrm{~mol}(0.00282 \mathrm{~mol}$ per tablet) $\quad+3$ for sig fig use
(d) $m=n M=0.00282 \times 176.1=0.497 \mathrm{~g}$

Total /36

Therefore /39
5.
(a) (i) Distilled water
(ii) Sodium thiosulfate solution
(b) $0.200 \times 0.0303=0.00606 \mathrm{~mol}$
(c) $1: 2$
(d) 0.00303 mol
(e) $0.00375-0.00303=0.000720 \mathrm{~mol}$
(f) 0.000720 mol

