Year 12 Chemistry UCR Assignment 1

1.	Iden (a) c (b) r (c) p	ify the following as reactions that release energy or reactions that absorb energy: mbustion spiration hotosynthesis	/1 /1 /1	
2.	Gluc	ose is produced by photosynthesis according to the following equation:		
		$6CO_{2(a)} + 6H_2O_{(l)} \rightarrow C_6H_{12}O_{6(aa)} + 6O_{2(a)}$ $\Delta H = +2820 \text{ kJ mol}^{-1}$		
	Writ	the thermochemical equation for the aerobic respiration of glucose.	/3	
3.	(a)	State whether the following reactions are endothermic or exothermic:		
		(i) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $\Delta H = +180 \text{ kJ mol}^{-1}$	/1	
		(ii) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H = -394 \text{ kJ mol}^{-1}$	/1	
		(iii) $C_2H_{6(g)} + 3.5O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)}$ $\Delta H = -360 \text{ kJ mol}^{-1}$	/1	
		(iv) $6CO_{2(g)} + 6H_2O_{(I)} \rightarrow C_6H_{12}O_{6(aq)} + 6O_{2(g)}$ $\Delta H = +2820 \text{ kJ mol}^{-1}$	/1	
	(b)	State which of the reactions in part (a) would cause, per mole of substance reacting:(i) the most amount of heat energy absorbed?	/1	
		(ii) the least amount of heat energy released, ignoring reactions that absorb energy?	/1	
4.	Whe calor (a)	a 50.0 mL of 2.00 mol L ⁻¹ hydrochloric acid is mixed with 50.0 mL of 2.00 mol L ⁻¹ sodium hydroxide in a meter, the temperature goes up 22.2°C. (Specific heat of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$) Calculate the energy change for the reaction.	/2	
	(b)	Calculate the enthalpy of neutralization for the reaction (kJ mol ⁻¹).	/3	
	(c)	Explain why it is preferable to use a polystyrene foam cup as a calorimeter instead of a glass beaker.	/2	
	(d)	State why the solution should be stirred during the reaction.	/1	
5.	(a)	State the meaning of the following two thermochemical equations:		
		$KOH_{(s)} + H_2O_{(l)} \rightarrow K^+_{(aq)} + OH^{(aq)} \qquad \Delta H = -55 \text{ kJ mol}^{-1}$		
		$\text{KOH}_{(aq)} + \text{HCl}_{(aq)} \rightarrow \text{KCl}_{(aq)} + \text{H}_2\text{O}_{(l)}$ $\Delta H = -57.1 \text{ kJ mol}^{-1}$	/2	
	(b)	Calculate the heat released when 100 g of potassium hydroxide is dissolved in excess water.	/2	
	(c)	Calculate the heat released when 200 mL of 0.500 mol L^{-1} hydrochloric acid is mixed with 300 mL of 0.400 mol L^{-1} potassium hydroxide.		
	(d)	Calculate which releases more heat – dissolving 50 g of potassium hydroxide in excess water, or combini 500 mL of 2 mol L^{-1} potassium hydroxide with excess acid.	ng /3	
6.	Amr	onium nitrate (NH ₄ NO ₃) is a substance commonly used in cold packs athletes use to treat injuries.		
	(a)	The accepted value for the enthalpy of solution of ammonium nitrate is +26.2 kJ mol ⁻¹ .		
		Write the thermochemical equation for the dissolving of ammonium nitrate in water.	/3	
	(b)	An experiment to determine the enthalpy of solution was carried out in a school laboratory, and the follow data was obtained:	ving	
		Mass of ammonium nitrate = 3.00 g		
		Mass of water = 100 g		
		Initial temperature = 21.4° C		
		Final temperature = 19.3° C		
		(Specific heat of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$)		
		(i) Calculate the number of moles of ammonium nitrate added.	/2	
		(ii) Calculate the amount of heat, in kJ, lost by the 100 g of water in the experiment.	/2	
		(iii) Calculate, from the experiment, the enthalpy of solution of ammonium nitrate.	/2	
	(c) S	nggest and explain one possible reason for the difference between the accepted value and the calculated va	lue	
	for t	e enthalpy of solution of ammonium nitrate.	/2	

TOTAL /41