Year 12 Chemistry

UCR Assignment 2

1.	Discuss the advantages and disadvantages of using biofuels for heat energy, compared with use as feedstock.	/2
2.	List the products of incomplete combustion and hence describe undesirable consequences brought about the products of incomplete combustion.	out /4
3.	Write balanced equations for the complete combustion of the following: (a) heptane, C_7H_{16} (b) ethane, C_2H_6 (c) glucose, $C_6H_{12}O_6$ (d) methanol, CH_3OH (e) propanol, C_3H_7OH	/2 /2 /2 /2 /2
4.	Write thermochemical equations to correspond to the following enthalpy reactions: (a) the enthalpy of combustion of propane gas (C ₃ H ₈), releasing 2220 kJ mol ⁻¹ . (b) the enthalpy of combustion butane gas (C ₄ H ₁₀), releasing 2886 kJ mol ⁻¹ . (c) the enthalpy of solution of ammonium nitrate, absorbing 25 kJ mol ⁻¹ . (d) the neutralization of sodium hydroxide solution with nitric acid solution, releasing 57.1 kJ mol ⁻¹ .	/3 /3 /3
5.	Calculate the heat energy released when the following quantities of methane are completely burnt in oxygen (the enthalpy of combustion of methane is 890 kJ mol ⁻¹): (a) one mole (b) one gram (c) one tonne.	/1 /2 /1
6.	A candle containing 151.2 g of stearic acid was burnt and used to warm 500.0 g of water, which was initially at 22.6°C. When the burning was stopped the remaining stearic acid weighed 149.6 g and the temperature of the water was 33.5°C. (Specific heat of water = 4.18 J g ⁻¹ K ⁻¹) (a) Calculate the heat needed to warm the water from 22.6°C to 33.5°C. (b) Calculate the heat produced by the combustion of 1.0 mole of stearic acid. (M = 284 g mol ⁻¹)	/2 /3
7.	The enthalpy of combustion of methane (natural gas) is as follows: $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)} \qquad \Delta H = -890 \text{ kJ mol}^{-1}$ (a) Calculate the heat released when 1.00×10^3 kg of methane is burned. (b) Calculate the volume of water that could be heated from 20.0°C to 70.0°C using the heat from th combustion of 1.00×10^3 kg tonne of methane, given the specific heat capacity of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$	
	TOTAL	/42