1. Discuss the advantages and disadvantages of using biofuels for heat energy, compared with use as feedstock.
2. List the products of incomplete combustion and hence describe undesirable consequences brought about by incomplete combustion.
3. Write balanced equations for the complete combustion of the following:
(a) heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$
(b) ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$
(c) glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad / 2$
(d) methanol, $\mathrm{CH}_{3} \mathrm{OH}$
(e) propanol, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
4. Write thermochemical equations to correspond to the following enthalpy reactions:
(a) the enthalpy of combustion of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, releasing $2220 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(b) the enthalpy of combustion butane gas $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$, releasing $2886 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(c) the enthalpy of solution of ammonium nitrate, absorbing $25 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(d) the neutralization of sodium hydroxide solution with nitric acid solution, releasing $57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
5. Calculate the heat energy released when the following quantities of methane are completely burnt in oxygen (the enthalpy of combustion of methane is $890 \mathrm{~kJ} \mathrm{~mol}^{-1}$):
(a) one mole $/ 1$
(b) one gram $/ 2$
(c) one tonne.
6. A candle containing 151.2 g of stearic acid was burnt and used to warm 500.0 g of water, which was initially at $22.6^{\circ} \mathrm{C}$. When the burning was stopped the remaining stearic acid weighed 149.6 g and the temperature of the water was $33.5^{\circ} \mathrm{C}$.
(Specific heat of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$)
(a) Calculate the heat needed to warm the water from $22.6^{\circ} \mathrm{C}$ to $33.5^{\circ} \mathrm{C}$.
(b) Calculate the heat produced by the combustion of 1.0 mole of stearic acid. ($\mathrm{M}=284 \mathrm{~g} \mathrm{~mol}^{-1}$)
7. The enthalpy of combustion of methane (natural gas) is as follows:

$$
\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \quad \Delta \mathrm{H}=-890 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) Calculate the heat released when $1.00 \times 10^{3} \mathrm{~kg}$ of methane is burned.
(b) Calculate the volume of water that could be heated from $20.0^{\circ} \mathrm{C}$ to $70.0^{\circ} \mathrm{C}$ using the heat from the combustion of $1.00 \times 10^{3} \mathrm{~kg}$ tonne of methane, given the specific heat capacity of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$

