Stage 2 Chemistry Using & Controlling Reactions Assignment 3

	Example solution	Comments/marks
Q1	A galvanic cell <u>produces</u> electricity from a chemical reaction, and an electrolytic cell causes a chemical reaction by <u>applying</u> electricity.	(2)
Q2	(a) $5e^{-} + 8H^{+} + MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O_{2I^{-}} \rightarrow I_{2} + 2e^{-}$ The negative/iodide/iodine electrode is the anode, since oxidation occurs at the anode.	 (1) must be balanced (1) must be balanced (1) must include statement and reason
	 (b) permanganate half-cell has the cathode (+) electrons flow to the permanganate half-cell ions in salt bridge flow in direction that completes the circuit 	 (1) (1) (1) Electrodes are most likely graphite since solid permanganate and iodine cannot carry current and would probably crumble anyway.
Q3	 (a) electrons are flowing to the spoon spoon should be marked as the negative electrode electrolyte labelled nickel electrode labelled (b) The cathode, as reduction occurs there. 	 (1) (1) (1) (1) statement, (1) reason Reduction converts metal ions into metal.
	(c) (i) Anode (oxidation): $Ni \rightarrow Ni^{2+} + 2e^{-}$ (ii) Cathode (reduction): $Ni^{2+} + 2e^{-} \rightarrow Ni$	(1) (1)
Q4	 (a) - zinc solid is oxidised to zinc ions at the anode - electrons flow to the cathode to reduce the permanganate ions - anode marked -, cathode marked + 	(1) (1) (1)
	(b) The salt bridge <u>connects the half-cells</u> and <u>completes the</u> <u>circuit</u>	(1) + (1) Free ions flow to carry charge.
	(c) Active electrodes are consumed (involved in the reaction), inert ones are not.	(1)
Q5	Fuel cells are galvanic cells in which the electrode reactants are available in continuous supply.	(1)
	Advantages include higher operating efficiency (and mass-to- power ratio), consistent operation, electrodes and electrolyte are not consumed, minimal maintenance is required	(1) any 3 of these or other legitimate advantages will do
	Disadvantages include possibility of contamination ruining the catalyst or electrolyte, the high purity fuels required are costly, many cells require high temperatures, catalysts can be costly, and some electrolytes are corrosive.	 (1) any 3 of these or other legitimate disadvantages will do Note: the questions ask for advantages etc compared with other galvanic cells. If you've stated one or more that compare with burning hydrocarbons or something, you lose half a mark.
Q6	A rechargeable galvanic cell can <u>reverse the electrode reactions</u> by <u>applying an external electrical supply</u> .	(1)
	During discharging, the original oxidiser and reducer are used up, producing electricity. During recharging, the oxidiser and reducer are regenerated by application of electricity in the opposite direction.	(1) (1)
Q7	 diagram shows electrons flowing to cathode cathode marked negative 	(1) (metal ions reduced by gain of electrons)(1)
	- reduction/cathode equation e.g. Na + $e^- \rightarrow Na$ - oxidation/anode equation e.g. 2Cl $^- \rightarrow Cl_2 + 2e^-$	 (1) (1) Electrolyte MUST be molten (since reactive metal)