\qquad
Year 12 Chemistry
Analytical Techniques
Formative Test
1.
(a) $M=39.998 \mathrm{~g} \mathrm{~mol}^{-1} \quad V=1 \mathrm{~L} \quad C=1.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
$n=C V=1.5 \times 10^{-5} \times 1=1.5 \times 10^{-5} \mathrm{~mol}$
$m=n M=1.5 \times 10^{-5} \times 39.998=6.0 \times 10^{-4} \mathrm{~g}$
(b) $5.9997 \times 10^{-4} \mathrm{~g}$ in 1 L
$\therefore 5.9997 \times 10^{-5} \mathrm{~g}$ in 100 mL
$\mu=10^{-6} \quad \therefore 5.9997 \times 10^{-5} \div 10^{-6}=60 \mu \mathrm{~g} 100 \mathrm{~mL}^{-1}$
2.
(a)
(i) Student 2
(ii) Student 1
(b) Volumetric pipette
(c) With distilled water. The number of moles in the flask before titrating must be accurately known.
(d) Yellow to red
(e) $\mathrm{HCl}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$V_{\mathrm{HCl}}=0.01940 \mathrm{~L} \quad V_{\mathrm{NaHCO}_{3}}=0.0200 \mathrm{~L}$
$C_{\mathrm{HCl}}=? \quad C_{\mathrm{NaHCO}_{3}}=0.100 \mathrm{~mol} \mathrm{~L}^{-1}$
$n_{\mathrm{NaHCO}_{3}}=C_{\mathrm{NaHCO}_{3}} \times V_{\mathrm{NaHCO}_{3}}=0.100 \times 0.0200=0.00200 \mathrm{~mol}$
Mole ratio $\mathrm{HCl}: \mathrm{NaHCO} 3$ is $1: 1$
So $n_{\mathrm{NaHCO}_{3}}=n_{\mathrm{HCl}}=0.00200 \mathrm{~mol}$
$C_{\mathrm{HCl}}=\frac{n_{\mathrm{HCl}}}{V_{\mathrm{HCl}}}=\frac{0.00200}{0.01940}=0.103 \mathrm{~mol} \mathrm{~L}^{-1}$
(f) $\begin{aligned} C & =0.103 \mathrm{~mol} \mathrm{~L}^{-1} \quad M=36.458 \mathrm{~g} \mathrm{~mol}^{-1} \\ C & =0.103 \times 36.458=3.756 \mathrm{~g} \mathrm{~L}^{-1} \\ C & =3.756 \div 10=0.376 \% \mathrm{w} / \mathrm{v}\end{aligned}$
3.
(a) $R_{f_{\mathrm{x}}}=\frac{\text { compound distance }}{\text { solvent distance }}=\frac{3.5}{4.0}=0.88$

$$
R_{f_{\mathrm{Y}}}=\frac{\text { compound distance }}{\text { solvent distance }}=\frac{2.5}{4.0}=0.63
$$

(b) \mathbf{Y} is more polar as it experiences less attraction to the nonpolar solvent and hence does not travel as far. It therefore has a lower R_{f} value.
4.
(a) The time it takes a particular component to travel through the system.
(b) Compound A. It travelled more quickly (exits the system first) meaning it is less attracted to the nonpolar stationary phase (i.e., it is more polar).
5.

(a) Calcium. The lamp emits unique wavelengths of light (corresponding to the characteristic energy levels) from calcium, and the calcium in the sample absorbs these unique wavelengths. The absorption is used to find the concentration.
(b) $0.006 \mathrm{~mol} \mathrm{~L}^{-1}$
(c) $C=0.006 \mathrm{~mol} \mathrm{~L}^{-1}$

So $0.006 \times \frac{20.0}{1000}=0.00012 \mathrm{~mol}$ in 20.0 mL
$M=40.08 \mathrm{~g} \mathrm{~mol}^{-1}$
$m=n M=0.00012 \times 40.08=0.00480 \mathrm{~g}$
(d) 0.00480 g in 4 g
$0.00480 \times 2.5 \times 10^{5}$
$=1200 \mathrm{ppm}$

