Year 12 Chemistry Test
Analytical Techniques
1.
(a) Calculate the mass of sodium hydroxide needed to prepare 1 L of $1.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ solution.
(b) Calculate this concentration in micrograms per hundred millilitres ($\mu \mathrm{g} / 100 \mathrm{~mL}$)
2. 20.0 mL aliquots of $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium bicarbonate were titrated with a hydrochloric acid solution using methyl orange as an indicator. Methyl orange is red in acid and yellow in base.
Three students performed the titration, and their results are shown below:

Student 1	Student 2	Student 3
19.50	19.30	19.35
19.20	19.35	19.50
19.35	19.20	19.60

(a) The correct titration figure was 19.40 mL . State which student's results were:
(i) most precise
(ii) most accurate
(b) Name the apparatus which would have been used to deliver the 20.0 mL aliquots.
(c) State and explain the procedure for rinsing the conical flask between titrations.
(d) State the colour change of the indicator at the endpoint $/ 1$
(e) Calculate the concentration of the hydrochloric acid solution using the correct titration figure. 14
(f) Calculate the hydrochloric acid concentration in $\% \mathrm{w} / \mathrm{v} \quad 12$
3. Two organic samples were analysed for purity by thin layer chromatography, using a polar stationary phase and a nonpolar organic solvent as the mobile phase. The chromatogram obtained is shown in the diagram below:

(a) Calculate the R_{f} values of components \mathbf{X} and \mathbf{Y}.
(b) State and explain with reference to the R_{f} values whether component \mathbf{X} or component \mathbf{Y} is more polar.
4. High-performance liquid chromatography, using a non-polar stationary phase, was used to separate two compounds in a sample. The chromatogram obtained is shown below:

(a) State the meaning of the term 'retention time'.
(b) Identify which of compounds A and B is more polar. Explain your answer.
5. To find the calcium concentration in a piece of chalk, a 4.00 g sample of the chalk was dissolved in 20.0 mL of sulphuric acid. This solution was sprayed into a flame of a previously calibrated spectrometer. The percentage absorption of the sample was 17.0%. The calibration graph is shown below:

(a) State and explain the element which must be in the lamp of the atomic absorption spectrometer.
(b) Use the graph to find the calcium concentration in the solution. Show your working on the graph.
(c) Calculate the mass of calcium in the 20.0 mL of solution.
(d) Calculate the calcium concentration in the chalk sample in ppm.

