NAME_____

Year 12 Chemistry Test Analytical Techniques

- 1.
- (a) Calculate the mass of sodium hydroxide needed to prepare $1 \text{ L of } 1.5 \times 10^{-5} \text{ mol } \text{L}^{-1}$ solution. /2
- (b) Calculate this concentration in micrograms per hundred millilitres (μ g / 100 mL) /2
- 2. 20.0 mL aliquots of 0.100 mol L⁻¹ sodium bicarbonate were titrated with a hydrochloric acid solution using methyl orange as an indicator. Methyl orange is red in acid and yellow in base.

Three students performed the titration, and their results are shown below:

Student 1	Student 2	Student 3
19.50	19.30	19.35
19.20	19.35	19.50
19.35	19.20	19.60

(a) The correct titration figure was 19.40 mL. State which student's results were:

(i) most precise	/1
(ii) most accurate	/1
(b) Name the apparatus which would have been used to deliver the 20.0mL aliquots.	/1
(c) State and explain the procedure for rinsing the conical flask between titrations.	/2
(d) State the colour change of the indicator at the endpoint	/1
(e) Calculate the concentration of the hydrochloric acid solution using the correct titration figure.	/4
(f) Calculate the hydrochloric acid concentration in %w/v	/2

3. Two organic samples were analysed for purity by thin layer chromatography, using a polar stationary phase and a nonpolar organic solvent as the mobile phase. The chromatogram obtained is shown in the diagram below:

- (a) Calculate the $\,R_{\rm f}\,$ values of components X and Y.
- (b) State and explain with reference to the R_f values whether component X or component Y is more polar.

12

4. High-performance liquid chromatography, using a non-polar stationary phase, was used to separate two compounds in a sample. The chromatogram obtained is shown below:

- (a) State the meaning of the term 'retention time'.
- (b) Identify which of compounds A and B is more polar. Explain your answer.
- 5. To find the calcium concentration in a piece of chalk, a 4.00 g sample of the chalk was dissolved in 20.0 mL of sulphuric acid. This solution was sprayed into a flame of a previously calibrated spectrometer. The percentage absorption of the sample was 17.0%. The calibration graph is shown below:

(a) State and explain the element which must be in the lamp of the atomic absorption spectrometer. /3
(b) Use the graph to find the calcium concentration in the solution. Show your working on the graph. /2
(c) Calculate the mass of calcium in the 20.0 mL of solution. /2
(d) Calculate the calcium concentration in the chalk sample in ppm. /2

/1

13