Titration Calculation Practice Questions

1. Eggshells contain calcium carbonate. The following procedure was used to determine the percentage, by mass, of calcium carbonate in 1.13 g of eggshell.
Step 1 The 1.13 g of eggshell were crushed and added to 100.0 mL of $0.300 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ solution. Excess HCl remained after the reaction was complete.

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Step 220.0 mL samples of the excess HCl were titrated with $0.10 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
(a) Calculate the initial number of moles of HCl present before the reaction in Step 1.
(b) The equation for the titration reaction in Step 2 is shown below:

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

In one titration 8.35 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was needed to neutralise the HCl in one 20.0 mL sample.
(i) Calculate the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ needed to neutralise the HCl in Step 2.
(ii) Hence state the number of moles of HCl in the 20.0 mL sample titrated in Step 2.
(iii) Hence calculate the total number of moles of excess HCl that remained after the reaction with the eggshell in Step 1.
(c) Calculate the number of moles of HCl that reacted with the eggshell in Step 1.
(d) Calculate the mass of calcium carbonate in the 1.13 g of eggshell.
(e) Calculate the percentage mass of calcium carbonate in eggshell.
2. The following procedure was used to determine the concentration of hydrogen gas in a sample of air:

Step $1 \quad 1.0 \times 10^{2} \mathrm{~L}$ of air was bubbled through 0.0500 L of 0.300 mol L - acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. An equation for the reaction that occurred is shown below:

$$
3 \mathrm{H}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

Excess $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ remained in the solution after the reaction.
Step 2 The excess $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ was titrated with $2.00 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Fe}^{2+}$ solution. An equation for the reaction that occurred is shown below:

$$
6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

A titre value of 17.75 mL was obtained.
(a) Calculate the number of moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ present before the reaction with H_{2} in Step 1.
(b) Calculate the number of moles of Fe^{2+} required to react with the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in Step 2.
(c) Hence calculate the number of moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ left unreacted after Step 1.
(d) Hence calculate the number of moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ that reacted with H_{2} in Step 1.
(e) Calculate the number of moles of H_{2} in the $1.0 \times 10^{2} \mathrm{~L}$ of air.
(f) Calculate the concentration, in $\% \mathrm{w} / \mathrm{v}$, of hydrogen gas in the air.
3. Solid pellets containing calcium hypochlorite, $\mathrm{Ca}(\mathrm{OCl})_{2}$ can be added to swimming pool water to control the levels of harmful bacteria.

The concentration of $\mathrm{Ca}(\mathrm{OCl})_{2}$ in one brand of solid pellets was determined by titration with a standard solution of Pb^{2+}, using the following procedure:
Step 1 Two pellets, each of mass 1.00 g , were crushed and made up to a solution of approximately 100 mL .
Step 2 The 100 mL of solution was titrated with a $0.500 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of Pb^{2+} in the burette. The equation for the reaction is shown below:

$$
\mathrm{Pb}^{2+}+\mathrm{OCl}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Pb}^{4+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

A titre of 40.80 mL was needed to reach end-point.
(a) Calculate the number of moles of Pb^{2+} needed to reach end-point.
(b) State the number of moles of OCl^{-}in the solution.
(c) Calculate the mass of $\mathrm{Ca}(\mathrm{OCl})_{2}$ in the solution.
(d) Hence calculate the percentage, by mass, of $\mathrm{Ca}(\mathrm{OCl})_{2}$ in each pellet.
4. The concentration of nitric acid in a commercial nitric acid solution can be determined by titration with sodium carbonate solution, following the procedure below:
Step 1 Dilute 10.00 mL of the commercial nitric acid solution to 250.0 mL with water.
Step 2 Pipette 20.00 mL of the dilute nitric acid solution into a conical flask.
Step 3 Titrate with sodium carbonate solution that has a concentration of $0.1170 \mathrm{~mol} \mathrm{~L}^{-1}$. The equation for the reaction is shown below:

$$
2 \mathrm{HNO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

In one titration, a titre of 31.46 mL was required to completely react with the dilute nitric acid solution.
(a) Calculate the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ that reacted in the titration.
(b) Hence calculate the number of moles of nitric acid in the dilute solution.
(c) Calculate the concentration, in $\mathrm{mol} \mathrm{L}^{-1}$, of nitric acid in the commercial nitric acid solution.
(d) Calculate the concentration, in $\% \mathrm{w} / \mathrm{v}$, of the commercial nitric acid solution.
5. The concentration of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, in a solution was determined by following the procedure below:

Step 1 An excess quantity of standard KMnO_{4} solution was added to a sample of the solution. The equation for the reaction is shown below:

$$
5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

Step 2 The excess MnO_{4}^{-}was titrated with standard Cu^{2+} solution:

$$
5 \mathrm{Cu}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Cu}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

In this analysis, 20.00 mL of $0.00490 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KMnO}_{4}$ solution was added to a 50.00 mL sample of the solution containing oxalic acid. Then 14.55 mL of $0.0233 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Cu}^{2+}$ solution was added to completely react with the excess MnO_{4}.
(a) Calculate the number of moles of MnO_{4}^{-}in 20.00 mL of $0.00490 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KMnO}_{4}$ solution.
(b) Calculate the number of moles of Cu^{2+} solution that reacted in the titration in Step 2.
(c) Calculate the number of moles of $\mathrm{MnO}_{4}{ }^{-}$ions that reacted in Step 2.
(d) Calculate the number of moles of MnO_{4}^{-}that reacted in Step 1, and hence the number of moles of oxalic acid in the original sample of the solution.
(e) Calculate the concentration of oxalic acid, in $\mu \mathrm{g} \mathrm{mL}^{-1}$, in the solution.
6. Tablets of ascorbic acid are commonly taken as a source of vitamin C. The following procedure was used to determine the percentage, by mass, of ascorbic acid in vitamin C tablets.

Step 1 Five vitamin C tablets, each of mass 500 mg , were crushed and added to 50.0 mL of $1.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ solution. Excess NaOH remained after the reaction was complete.

$$
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}+\mathrm{NaOH} \rightarrow \mathrm{NaC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O}
$$

Step 2 The excess NaOH was titrated with $0.50 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution from a burette.

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

(a) Calculate the number of moles of NaOH solution added to the vitamin C tablets in Step 1.
(b) In one titration 38.79 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was required to react completely with the excess NaOH .
(i) Calculate the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to neutralise the excess NaOH .
(ii) Hence calculate the number of moles of excess NaOH .
(iii) Hence calculate the number of moles of NaOH that reacted with the vitamin C tablets in Step 1.
(c) Calculate the total mass of ascorbic acid in the tablets and hence the percentage, by mass, of ascorbic acid in the tablets.

