Projectile Motion Assignment 1 SOLUTIONS

1. a)

$$
\begin{aligned}
& v_{0_{V}}=v_{0} \sin \theta \quad a_{V}=-9.81 \mathrm{~ms}^{-1} \quad s_{V}=0 \mathrm{~m} \quad t=? \\
& \quad=20 \sin 20^{\circ} \\
& \quad=6.84 \mathrm{~ms}^{-1} \\
& s_{V}=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2} \\
& \therefore 0=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2} \\
& \therefore 0=t\left(v_{0_{V}}+\frac{1}{2} a_{V} t\right) \\
& \therefore t=0 \text { or } v_{0_{V}}+\frac{1}{2} a_{V} t=0
\end{aligned}
$$

$$
\text { Consider } v_{0_{v}}+\frac{1}{2} a_{V} t=0
$$

$$
\therefore t=\frac{-v_{0_{V}}}{\frac{1}{2} a_{V}}
$$

$$
\therefore t=\frac{-6.84}{\frac{1}{2}(-9.8)}=1.4 \mathrm{~s}
$$

b)

$$
\begin{aligned}
v_{H} & =v_{0_{H}}=v_{0} \cos \theta \quad t=1.4 s \quad s_{H}=? \\
& =20 \cos 20^{\circ} \\
& =18.79 \mathrm{~ms}^{-1} \\
s_{H} & =v_{H} t \\
& =18.79 \times 1.4 \\
& =26.2
\end{aligned}
$$

The distance between the players is 26 m
c)

$$
\begin{aligned}
v_{V} & =v_{0_{V}}+a_{V} t \quad v_{H}=v_{0_{H}}=18.79 \mathrm{~ms}^{-1} \\
& =6.84+-9.8 \times 1.4 \\
& =-6.8 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
v & =\sqrt{(-6.8)^{2}+18.79^{2}} \\
& =20 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{v_{V}}{v_{H}}\right) \\
& =\tan ^{-1}\left(\frac{-6.8}{18.79}\right) \\
& \left.=-20^{\circ} \quad \text { \{Negative sign means below horizontal. }\right\}
\end{aligned}
$$

So the velocity of the ball on hitting the second player's toes is $20 \mathrm{~ms}^{-1}$ at 20° below the horizontal.
2.
a) $s_{H}=10 \mathrm{~m} \quad v=? \quad \theta=70^{\circ} \quad a_{V}=-g$
$v_{0_{v}}=v_{0} \sin 70^{\circ}$

Since the object lands at its launch height, $v_{V}=-v_{0_{v}}$
$v_{V}=v_{0_{V}}+a_{V} t$
$\therefore-v_{0_{v}}=v_{0_{v}}-g t$
$\therefore 2 v_{0_{v}}=g t$
$\therefore t=\frac{2 v_{0_{V}}}{g}$
$\therefore t=\frac{2 v_{0} \sin 70^{\circ}}{g}$
b) $s_{H}=v_{H} t$
$\therefore v_{H}=\frac{S_{H}}{t}$
$\therefore v_{H}=\frac{s_{H} g}{2 v_{0} \sin 70^{\circ}}$
c) Initial and final horizontal components of velocity are the same, so $v_{H}=v_{0_{H}}=v_{0} \cos \theta$

From part b, $v_{H}=\frac{s_{H} g}{2 v_{0} \sin 70^{\circ}}$
$\therefore v_{0} \cos 70^{\circ}=\frac{s_{H} g}{2 v_{0} \sin 70^{\circ}}$
$\therefore v_{0}{ }^{2}=\frac{s_{H} g}{2 \cos 70^{\circ} \sin 70^{\circ}}$
Speed can't be negative, so $v_{0}=\sqrt{\frac{s_{H} g}{2 \cos 70^{\circ} \sin 70^{\circ}}}$
$\therefore v_{0}=\sqrt{\frac{10 \times 9.8}{2 \cos 70^{\circ} \sin 70^{\circ}}}=12.34 \mathrm{~ms}^{-1}$
The boule's initial velocity will need to be $12 \mathrm{~ms}^{-1}$ at 70° above the horizontal.
3.
a) In order to find the horizontal range of the projectile, in this case we need the time of flight first.

$$
\begin{aligned}
& a_{V}=-9.8 \mathrm{~ms}^{-2} \quad s_{V}=-10 \mathrm{~m} \quad v_{0_{V}}=0 \mathrm{~ms}^{-1} \quad v_{H}=7.0 \mathrm{~ms}^{-1} \quad t=? \\
& s_{V}=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2} \\
& \therefore s_{V}=\frac{1}{2} a_{V} t^{2} \\
& \therefore t=\sqrt{\frac{s_{V}}{\frac{1}{2} a_{V}}} \\
& \therefore t=\sqrt{\frac{-10}{\frac{1}{2} \times(-9.8)}}=1.4 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
s_{H} & =v_{H} t \\
& =7.0 \times 1.4 \\
& =10 \mathrm{~m}
\end{aligned}
$$

It is very likely the rock will hit the soldier.
b)

$$
\begin{aligned}
v_{V} & =v_{0_{V}}+a_{V} t \quad v_{H}=v_{0_{H}}=7.0 \mathrm{~ms}^{-1} \\
& =0+-9.8 \times 1.4 \\
& =-14 \mathrm{~ms}^{-1} \\
v & =\sqrt{(-14)^{2}+7.0^{2}} \\
& =16 \mathrm{~ms}^{-1}
\end{aligned}
$$

So the speed of the rock on impact is $16 \mathrm{~ms}^{-1}$
4. $v_{0}=50 \mathrm{~ms}^{-1} \quad \theta=70^{\circ} v_{V}=0 \mathrm{~ms}^{-1} s_{V}=$?
$v_{0_{v}}=v_{0} \sin \theta=50 \sin 70^{\circ}=47 \mathrm{~ms}^{-1}$
$v_{0_{H}}=v_{0} \cos \theta=50 \cos 70^{\circ}=17 \mathrm{~ms}^{-1}$
$v_{V}{ }^{2}=v_{0_{V}}{ }^{2}+2 a_{V} s_{V}$
$\therefore s_{V}=\frac{v_{V}{ }^{2}-v_{0_{V}}{ }^{2}}{2 a_{V}}$
$\therefore s_{V}=\frac{0^{2}-47^{2}}{2(-9.8)}=113 \mathrm{~m}$
The maximum height the student reaches is $113+10=123 \mathrm{~m}$
5.
$t=5.62 \mathrm{~s} v_{V}=0 \mathrm{~ms}^{-1} s_{V}=$?

In half the time of flight, the Vortex would free fall the same distance as the maximum displacement here
$s_{V}=\frac{1}{2} a_{V}\left(\frac{t}{2}\right)^{2}$
$\therefore s_{V}=\frac{1}{2} \times(-9.8) \times\left(\frac{5.62}{2}\right)^{2}=38.69 \mathrm{~m}$
The maximum height is $1.59+38.69=40.3 \mathrm{~m}$

