## Projectile Motion Assignment 2

1. Draw a diagram showing the path of a projectile thrown upwards at an angle from level ground. At the start, maximum height and end:

- draw a vector showing the direction and magnitude of velocity
- draw a vector showing the direction and magnitude of the acceleration

2. The multi-image diagram below represents a projectile that has been thrown horizontally from the top of a cliff. The time interval between images is 0.20 s .

(a) Explain how the diagram shows the horizontal component of acceleration is zero throughout the projectile's motion.
(b) Calculate the velocity of the projectile 0.34 s after it has been thrown.

Include somewhere in your working a vector diagram showing how the horizontal and vertical components add to give the final velocity.
3. Two projectiles are launched with the same initial speed, and from the same initial height, but at different launch angles. They result in the same range.
(a) Draw a diagram showing both flight paths.
(b) Discuss the relationship between the two launch angles.
4. Describe the effect air resistance has on both the horizontal component and the vertical component of velocity, and hence the time of flight and the range, of a projectile launched horizontally from a height.
5. An evil but very precise student throws a textbook from the 89.99 cm height of his desk at $7.164 \mathrm{~ms}^{-1}$, at an angle of $26.20^{\circ}$ above the horizontal. It lands on another student's desk which just so happens to be the same height.
(a) Calculate the distance between the desks
(b) Calculate the maximum height of the throw
6. For a tennis ball and a table tennis ball travelling at the same speed:
(a) State two reasons why the tennis ball has a greater force of air resistance. $/ 2$
(b) State why the table tennis ball has greater acceleration due to air resistance. /1

