\qquad

Momentum in Two Dimensions Assignment 1

1. A ball of mass $m=200 \mathrm{~g}$ is initially at rest. The ball is then hit with a bat. After being hit, the ball travels to the right with a horizontal speed of $12 \mathrm{~ms}^{-1}$.
(a) Calculate the magnitude of the momentum of the ball immediately after being hit.
(b) The ball is in contact with the bat for $6 \times 10^{-3} \mathrm{~s}$. Calculate the average force exerted by the bat on the ball.
(c) State the average force exerted by the ball on the bat, and write an equation which supports your answer.
2. A stick drawing of a firework rocket is propelled by the expulsion of burning "exhaust" letters. The direction of the thrust is shown below:

(a) State the law of conservation of momentum.
(b) Use this law to explain why the rocket experiences constant acceleration (assuming the mass of the rocket stays constant, the exhaust letters are of equal mass and are expelled at a constant rate).

The firework (of mass m) is travelling at speed v when it explodes and breaks into two identical fragments, each of mass $\frac{m}{2}$.
The two fragments, fragment A and fragment B, each travel at an angle of 60° to the rocket's initial direction of motion, as shown in the diagram below:
rocket, m
fragment A, $\frac{m}{2}$
fragment $B, \frac{m}{2}$
(c) Determine the speed of fragment A in terms of v. Give reasons for your answer.
3. Derive Newton's second law in terms of momentum $\vec{F}=\frac{\Delta \vec{p}}{\Delta t}$.

Momentum in Two Dimensions Assignment 2

1.

a) Derive the equation $\Delta \vec{p}_{1}+\Delta \vec{p}_{2}=0$ expressing the conservation of momentum for two interacting particles. $/ 2$
b) Hence state an equation expressing the conservation of momentum for three interacting particles.
2.

If you inflate a balloon and then let it go, it will fly around the room. If the air is leaving the balloon at $10 \mathrm{~ms}^{-1}$ and flowing at $100 \mathrm{gs}^{-1}$, determine the magnitude of the average force being applied to the balloon.
3.

A particle of mass 2.0 kg moving at $3.0 \mathrm{~ms}^{-1}$ collides with a stationary mass of 3.0 kg . After the collision the masses move off at right angles to each other, with the 2.0 kg mass having a velocity of $2.0 \mathrm{~ms}^{-1}$.
Calculate the speed of the 3.0 kg mass after the collision.
4.
a) Explain in terms of the law of conservation of momentum, how the momentum of light particles (photons) can be used to accelerate a solar sail.
b) Explain, using vector diagrams, whether absorbed photons or reflected photons would give a craft with a solar sail more acceleration.
\qquad

1. A ball of mass 0.53 kg is moving at a speed of $4.1 \mathrm{~ms}^{-1}$ when it collides with a wall.

The ball bounced off the wall without a change of speed.
The ball is moving at 45° to the wall before and after the collision, as shown in the diagram below:

Determine the magnitude and direction of the change in momentum of the ball.
2. Ball A, with mass m is moving at speed $2.0 \mathrm{~ms}^{-1}$ and collides with ball B of mass 0.25 kg which is stationary. After the collision, the balls are moving away at right angles to each other, as shown below:

Determine the mass of ball A.
3. A stationary object explodes into three fragments, A, B and C , as shown below.

Fragment A has a mass of 0.10 kg
Fragment B has a mass of 0.13 kg and a speed of $0.29 \mathrm{~ms}^{-1}$
Fragment C has a mass of 0.095 kg and a speed of $0.32 \mathrm{~ms}^{-1}$
Fragments B and C are moving away at right angles to each other

Determine the speed and direction of fragment A.

