1. Two point charges, q_{1} and q_{2}, are separated by a distance $3 d$ in a vacuum, as shown in the diagram below. Point P is situated on a line between q_{1} and q_{2}, at a distance d from q_{1}.

a) Write an expression in terms of q_{1} and d for the electric field at point P due to point charge q_{1}.
b) The strength of the electric field at point P is zero. Calculate the ratio $q_{1}: q_{2}$ of the point charges.
c) If q_{1} is +1.0 C and the charges are now rearranged as shown below:

Calculate the magnitude and direction of electric field strength at point P due to q_{1} and q_{2}.
2. Explain how the electric forces are consistent with Newton's third law.
3. You have committed an electric crime and are charged with 2.31 mC . As punishment you are placed in an electric field and feel a force of 462N.
Calculate the magnitude of the electric field strength at the point which you are placed. $/ 2$ 4. Using Coulomb's law, derive the expression $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}$ for the magnitude of the electric field at a distance r from a point charge q.
5.
a) Sketch the electric field produced by a hollow spherical charged conductor.
b) Explain why there is no electric field inside the conductor.
6. Sketch the electric field that results when a solid uncharged conducting sphere is placed in the region between two oppositely charged finite parallel plates. Include any field in and around the plates.
7. Explain why the air in the vicinity of a charged sharp point may be ionised.
8. Explain why the component of the electric field parallel to a conducting surface will always be zero.

