1.

NAME_____

	a) Describe what is meant by two wave sources being in phase or out of phase.	/1
	b) Explain why light from an incandescent source is neither coherent nor monochromatic.	
	c) Describe constructive and destructive interference in terms of the principle of superposition.	/2
		/1
	d) Describe diffraction of light by a narrow slit, where the width of the slit is about the same size wavelength.	as the
		/2
2.	Explain why a single slit is used before a double slit for two-slit interference when the light source not coherent.	e used is
		/2
3. Draw an intensity distribution of the pattern caused by a two-slit interference apparatus for monochromatic light and explain why it looks the way it does.		
		/2
4.	a) Derive $d \sin \theta = m\lambda$ for two-slit interference, where d is the distance between the slits and θ is angular position of the <i>m</i> th maximum.	s the
		/3
	b) Calculate the wavelength of light required for two slit interference to produce first order maxima at 5.0° if the slits are 1.1×10^{-6} m apart.	
		/2
	c) If the pattern illuminates a screen 5 m away, determine the distance between the maxima.	
		/2
5.		
	a) Describe the interference pattern produced by monochromatic light through a diffraction grating, and explain the large regions of negligible intensity between the maxima.	
		/2
	b) The Antisaurus Defence System uses a $\lambda = 5.1 \times 10^{-7}$ m laser and diffraction grating to deter oncoming formations of pterosaurs [*] . For the system to work, the second order maxima should be at about 20°.	
	Show that there are 3400 lines per continuated in the system's grating	

Show that there are 3400 lines per centimetre in the system's grating.

/3

TOTAL /22

^{*}Pterosaurs are careful creatures, you see, so if a hazard like a laser is shining in their direction they tend to give up formation and go to the beach instead.

1. Derive $d \sin \theta = m\lambda$ for the intensity maxima in the pattern produced by a transmission diffraction grating, where *d* is the distance between the slits in the grating and θ is the angular position of the *m*th maximum (*m* specifies the order of the maximum).

The Interference of Light Assignment 2

2.a) Sketch a graph of the intensity distribution of the maxima produced by a grating, for monochromatic light.

b) The Antisaurus Defence System uses a $\lambda = 5.1 \times 10^{-7}$ m laser and transmission diffraction grating with 4300 lines per centimetre. Calculate the maximum possible number of pterosaurs that could be deterred at the same time.

3. Describe how a grating can be used to measure the wavelength of light from a monochromatic source.

4.

5.

a) Describe and explain the pattern produced by shining white light through a diffraction grating.
/3
b) Identify the properties of a grating which make it useful in spectroscopy.
/2
a) Explain the speckle effect in terms of interference.
/2
b) Explain how the interference of light can be used to read the information stored on an optical disc.
/3
c) Explain how a diffraction grating is used in the three-beam method to keep the laser on the correct track of a compact disc.
/2

NAME

/3

/3

12

/2