Nuclear Fission and Fusion Assignment

1. Given the following masses: 235 U = 2.0017 × 10⁻²⁵ k

4.

$$\sum_{138}^{295} U = 3.9017 \times 10^{-25} \text{ kg}$$

$$\sum_{56}^{138} Ba = 2.28922 \times 10^{-25} \text{ kg}$$

$$\sum_{36}^{95} \text{Kr} = 1.57534 \times 10^{-25} \text{ kg}$$

Calculate the energy (in J and MeV) released per the following fission reaction:

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{138}_{56}Ba + {}^{95}_{36}Kr + 3 {}^{1}_{0}n$$
/3

NAME_____

/2

2. Compare the approximate amounts of energy released in chemical, fission and fusion reactions. /1

3. Explain fission in terms of short-range nuclear-attractive forces and long-range coulomb-repulsive forces.

	(a)	State why neutrons have to be slowed down in order to produce fission in ²³⁵ U	/1
	(b)	Explain why the most effective moderators have atoms of low mass and low absorption of neutrons	/2
	(c)	State why the nuclei produced by fission reactions are likely to have an excess of neutrons	/1
	(d)	State why fission products are hazardous and difficult to process	/1
	(e)	State why it is generally not possible to attain a continuous chain reaction using naturally occurring uranium unless it is enriched with $^{235}\rm{U}$	/1
5.			
	(a)	Draw and label a basic diagram showing the following components of a water-moderated reactor: core, fuel rods, moderator, control rods, heat exchanger, and shielding.	/4
	(b)	Describe the function of each of the following components of a water-moderated fission power reactor: fuel rods, moderator, control rods, heat exchanger, safety rods, and shielding.	/6
	(c)	Explain starting, normal operation and stopping of a nuclear reactor in terms of chain reactions.	/3
	(d)	Explain briefly why the delayed emission of neutrons allows the chain reaction in a nuclear power reactor to be controlled.	/1
	(e)	Discuss the advantages and disadvantages of nuclear fission over fossil fuel power stations.	
			/3
6.	Giv ene	ren that deuterium has a mass of 3.344×10^{-27} kg and helium-3 has a mass of 5.008×10^{-27} , calculate the rgy (in J and MeV) released in the fusion reaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n$.	•
			/3
7.	Sta kin	te the main energy conversion process in suns and stars and describe the conditions that favour this d of reaction.	/2
8.	Dis	cuss the advantages and disadvantages of nuclear fusion over nuclear fission as a source of power.	/3

TOTAL /37