\qquad

Projectile Motion Test 2

1. A soccer ball is kicked from ground level with a speed of $12.3 \mathrm{~ms}^{-1}$ at an angle of 26.0° above the horizontal.
(a) Calculate the horizontal and vertical components of the initial velocity of the soccer ball.
(b) Show that the time of flight of the soccer ball is 1.10 s , assuming it lands at ground level. $/ 3$
(c) Hence calculate the range of the soccer ball. $\quad / 2$
(d) Calculate the maximum height of the soccer ball. $\quad 12$
(e) Calculate the velocity of the soccer ball 0.87 seconds after it was kicked. 14
(f) Explain the effect decreasing the launch angle will have on the range of the soccer ball. $/ 2$
2. In a game of badminton, a projectile called a shuttlecock is used. The shuttlecock has feathers attached in such a way that it experiences significant air resistance.

Explain why the time of flight of a shuttlecock hit horizontally from a height is greater when air resistance is present.
3. A GoPro is dropped from an aircraft moving horizontally at $68 \mathrm{~ms}^{-1}$ at an altitude of $2.2 \times 10^{3} \mathrm{~m}$.
(a) Show that the time taken t for a object dropped from an aircraft moving at speed ν_{H} to reach speed v_{t} is $t=\sqrt{\frac{v_{t}{ }^{2}-v_{H}{ }^{2}}{g^{2}}}$
(b) Determine whether the GoPro is able to reach a speed of $200 \mathrm{~ms}^{-1}$.

