Projectile Motion Test 2

1.

(a) $v_{H}=v_{0} \cos \theta=12.3 \times \cos 26.0^{\circ}=11.1 \mathrm{~ms}^{-1}$
$v_{V}=v_{0} \sin \theta=12.3 \times \sin 26.0^{\circ}=5.39 \mathrm{~ms}^{-1}$
(b) $s_{V}=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2}$

Lands at launch height $\therefore s_{V}=0$
$\therefore 0=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2}$
$\therefore 0=t\left(v_{0_{V}}+\frac{1}{2} a_{V} t\right)$
$\therefore t=0 \quad$ or $\quad v_{0_{v}}+\frac{1}{2} a_{V} t=0$
$\therefore t=\frac{-v_{0_{V}}}{\frac{1}{2} a_{V}}=\frac{-5.39}{\frac{1}{2} \times-9.8}=1.10 \mathrm{~s}$
(c) $s_{H}=v_{H} t=11.1 \times 1.10=12.2 \mathrm{~m}$
(d) $v_{V}{ }^{2}=v_{0_{v}}{ }^{2}+2 a_{V} s_{V}$

At max height, $v_{V}=0$
$\therefore 0=v_{0_{V}}{ }^{2}+2 a_{V} s_{V}$
$\therefore-v_{0_{V}}{ }^{2}=2 a_{V} s_{V}$
$\therefore s_{V}=\frac{-v_{0_{V}}{ }^{2}}{2 a_{V}}=\frac{-5.39^{2}}{2 \times-9.8}=1.48 \mathrm{~m}$
(e) $v_{V}=v_{0_{V}}+a_{V} t$

$$
\begin{aligned}
& =5.39+-9.8 \times 0.87 \\
& =-3.1 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
v_{H}=11.1 \mathrm{~ms}^{-1}
$$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{v_{V}}{v_{H}}\right)=\tan ^{-1}\left(\frac{3.1}{11.1}\right)=16^{\circ} \\
& v=\sqrt{v_{H}^{2}+v_{V}^{2}}=\sqrt{11.1^{2}+5.39^{2}}=12 \mathrm{~ms}^{-1}
\end{aligned}
$$

The final velocity of the soccer ball is $12 \mathrm{~ms}^{-1}$ at 16° below the horizontal.
(f) Decreasing the angle decreases the vertical component of initial velocity, which decreases the time of flight. The horizontal component is slightly increased but not enough to counteract this change.
2. Air resistance is a force which opposes motion, slowing the velocity of the shuttlecock. In this case therefore there will be a force acting upwards on the projectile, reducing its downward acceleration and therefore increasing the time of flight.
3.
(a) $v_{V}=v_{0_{V}}+a_{V} t$
$v_{0_{V}}=0$ when dropped
$\therefore v_{V}=a_{V} t$

$$
\begin{aligned}
& v_{f}=\sqrt{v_{H}^{2}+v_{V}^{2}} \\
& \quad=\sqrt{v_{H}^{2}+\left(a_{V} t\right)^{2}} \\
& \therefore v_{f}^{2}=v_{H}^{2}+\left(a_{V} t\right)^{2} \\
& \therefore\left(a_{V} t\right)^{2}=v_{f}^{2}-v_{H}^{2} \\
& \therefore g^{2} t^{2}=v_{f}^{2}-v_{H}^{2} \\
& \therefore t^{2}=\frac{v_{f}^{2}-v_{H}^{2}}{g^{2}} \\
& \therefore t=\sqrt{\frac{v_{f}^{2}-v_{H}^{2}}{g^{2}}}
\end{aligned}
$$

(b) There are multiple approaches to this question. In this example, we calculate the time of flight and the time to reach $200 \mathrm{~ms}^{-1}$, and compare.
Time of flight:
$s_{V}=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2}$
$v_{0_{v}}=0$ when dropped
$\therefore s_{V}=\frac{1}{2} a_{V} t^{2}$
$\therefore t=\sqrt{\frac{s_{V}}{\frac{1}{2} a_{V}}}=\sqrt{\frac{-2.2 \times 10^{3}}{\frac{1}{2} \times-9.8}}=21.2 \mathrm{~s}$
Time to reach $200 \mathrm{~ms}^{-1}$:
$t=\sqrt{\frac{v_{f}{ }^{2}-v_{H}{ }^{2}}{g^{2}}}=\sqrt{\frac{200^{2}-68^{2}}{9.8^{2}}}=19.2 \mathrm{~s}$
The GoPro will reach a speed of $200 \mathrm{~ms}^{-1}$.

