1.

We could use $s_{H}=v_{0_{H}}+\frac{1}{2} a_{H} t^{2}$ for horizontal motion. However there is no acceleration due to gravity in the horizontal direction, so $a_{H}=0$. Also, since we assume no air resistance, $v_{H}=v_{0_{H}}$ so we have $s_{H}=v_{H} t+\frac{1}{2}(0) t^{2} \quad \therefore s=v_{H} t$
2.

$$
\begin{aligned}
& s_{V}=h \quad a_{V}=-g \quad v_{0_{V}}=v\{\text { given }\} \quad v_{V}=0 \text { at max height } \\
& v_{V}^{2}=v_{0_{V}}{ }^{2}+2 a_{V} s_{V} \\
& \therefore 0^{2}=v^{2}+2(-g)(h) \\
& \therefore-v^{2}=2(-g)(h) \\
& \therefore h=\frac{-v^{2}}{2(-g)} \\
& \therefore h=\frac{v^{2}}{2 g}
\end{aligned}
$$

3.

a)

$$
\begin{aligned}
& v_{0_{V}}=0 \mathrm{~ms}^{-1} \\
& \begin{aligned}
v_{V} & =v_{0_{V}}+a_{V} t \\
& =0+-9.8 \times 1.93 \\
& =-18.9 \mathrm{~ms}^{-1}
\end{aligned}
\end{aligned}
$$

The BASE jumper is falling vertically at $18.9 \mathrm{~ms}^{-1}$ (3 s.f.) when he starts to open his parachute.
b)

$$
\begin{aligned}
v_{H} & =v_{0_{H}}=5.56 \mathrm{~ms}^{-1} \\
s_{H} & =v_{H} t \\
& =5.56 \times 1.93 \\
& =10.7 \mathrm{~m}
\end{aligned}
$$

The jumper has moved 10.7 m away from the bridge horizontally by this time (3 s.f.)
c) $\quad v_{H}=5.56 \mathrm{~ms}^{-1}$

$$
\theta=73.6^{\circ}
$$

$$
v=19.7 \mathrm{~ms}^{-1}
$$

$$
\theta=\tan ^{-1}\left(\frac{18.9}{5.56}\right)=73.6^{\circ}(3 \text { s.f. })
$$

$$
v_{V}=18.9 \mathrm{~ms}^{-1} \quad v=\sqrt{v_{H}^{2}+v_{V}^{2}}=\sqrt{5.56^{2}+18.9^{2}}=19.7 \mathrm{~ms}^{-1}(3 \text { s.f. })
$$

d) A parachute has a large projected area therefore increases the force of air resistance.
4. a)

$$
\begin{aligned}
& v_{0_{H}}=v_{0} \cos \theta=30 \cos 40^{\circ}=23 \mathrm{~ms}^{-1} \\
& v_{0_{v}}=v_{0} \sin \theta=30 \sin 40^{\circ}=19 \mathrm{~ms}^{-1}
\end{aligned}
$$

b)
$s_{V}=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2}$
$0=19.3 t+\frac{1}{2}(-9.8) t^{2}$
$\therefore 0=t\left(19.3+\frac{1}{2}(-9.8) t\right)$
$\therefore t=0$ or $19.3+\frac{1}{2}(-9.8) t=0$
$\therefore t=\frac{-19.3}{\frac{1}{2}(-9.8)}=3.9 \quad\{t=0$ is beginning of flight, not useful $\}$
The time of flight of the golf ball is 3.9 s (2 s.f.)
c) If launched from a height the ball will have greater range (travel further horizontally). The ball has further to fall, increasing its time of flight. Since $s_{H}=v_{H} t$, range increases.
5.
a) The projectile travels 40 m in 4 seconds

$$
\begin{aligned}
& s_{H}=v_{H} t \\
& \therefore v_{H}=\frac{s_{H}}{t}=\frac{40}{4}=10 \mathrm{~ms}^{-1}
\end{aligned}
$$

b) $s_{V}=20 \mathrm{~m} \quad t=4 \mathrm{~s}$
$s_{V}=v_{0_{V}} t+\frac{1}{2} a_{V} t^{2}$
$v_{0_{v}}=0 \quad$ since launched horizontally
$\therefore s_{V}=\frac{1}{2} a_{V} t^{2}$
$\therefore a_{V}=\frac{s_{V}}{\frac{1}{2} t^{2}}=\frac{20}{\frac{1}{2}(4)^{2}}=2.5 \mathrm{~ms}^{-2}$
5.
c) and d)
height
(m)

(The acceleration arrows don't have to be all equal length since question only asks to show direction.)

