## Year 12 Physics SOLUTIONS

## Formative Test - Circular Motion and Gravitation

1. 

a) Acceleration is change in velocity, and velocity has both magnitude (speed) and direction. So a change in direction is a change in velocity, and therefore acceleration.
b) The force of gravitational attraction
2.
a) The tension in the rope.
b) $a=\frac{v^{2}}{r} \quad$ and $F=m a$
$\therefore F=\frac{m v^{2}}{r}$
$v=\frac{2 \pi r}{T} \quad\left\{\right.$ since speed $=\frac{\text { distance }}{\text { time }}$, circumference $2 \pi r$ is distance and period $T$ is time $\}$
$\therefore F=\frac{m\left(\frac{2 \pi r}{T}\right)^{2}}{r}$
$\therefore F=\frac{m \frac{4 \pi^{2} r^{2}}{T^{2}}}{r}$
$\therefore F=\frac{m}{r} \times \frac{4 \pi^{2} r^{2}}{T^{2}}$
$F=\frac{4 \pi^{2} m r}{T^{2}}$
c) $m=60 \mathrm{~kg} \quad r=10 \mathrm{~m} \quad T=6.28 \mathrm{~s}$

$$
F=\frac{4 \pi^{2} m r}{T^{2}}
$$

$$
F=\frac{4 \pi^{2} \times 60 \times 10}{(6.28)^{2}}
$$

$$
=601
$$

The magnitude of the tension in the rope is $6.0 \times 10^{2} \mathrm{~N}(2$ s.f.)
3.
a) Banking a curve means that the normal force (the road on the car) has a horizontal component. This horizontal component provides some (or all) of the centripetal acceleration for a car taking the curve. This means the friction does not need to provide as much acceleration.


In the diagram, $\mathrm{F}_{\mathrm{NH}}$ can be seen to provide at least some of the centripetal acceleration.
b) The vertical component must still be sufficient to keep the car from sinking into the road, so $F_{N_{V}}=m g$.
For the horizontal component to provide exactly all the centripetal acceleration
(friction of the tyres not needed) $F_{N_{H}}=F_{c}=m a_{c}=m \frac{v^{2}}{r}$
The total normal force is the vector sum of its components, so:
4.


$$
\begin{aligned}
& \tan \theta=\frac{F_{N_{H}}}{F_{N_{V}}} \\
& \therefore \tan \theta=\frac{m \frac{v^{2}}{r}}{m g}
\end{aligned}
$$

$$
\therefore \tan \theta=\frac{v^{2}}{r g}
$$

a)
$v=\sqrt{\frac{G M}{r}}$
$G, r$ constant
$\therefore v \propto \sqrt{M}$
$\therefore \frac{v_{2}}{v_{1}}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}$
$\therefore v_{2}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}} \times v_{1}=\frac{\sqrt{4 M}}{\sqrt{M}} \times 1552=2 \times 1552=3104 \mathrm{~ms}^{-1}$
b) It must, since the centripetal acceleration is towards the centre of the orbit and this acceleration is provided by the gravitational force which is from centre-to-centre.
5. Since the Earth spins West-to-East, the satellite will already have some of the high orbital speed necessary.
6. Low altitude polar, as they are able to see any point on the Earth undistorted and close up. $/ 2$

