Year 12 Physics Test

Uniform Circular Motion

1.

(a) Circumference of circle of motion $C=2 \pi r$

Time for one circumference is period T
$t=\frac{s}{v}$
$\therefore T=\frac{2 \pi r}{v}$
(b) $T=\frac{2 \pi r}{v}=\frac{2 \pi \times 9.6}{1.3}=46 \mathrm{~s}$
(c) $a=\frac{v^{2}}{r}=\frac{1.3^{2}}{9.6}=0.18 \mathrm{~ms}^{-2}$
(d) $\Delta \vec{v}=\vec{v}_{B}-\vec{v}_{A}=4-\quad=$
$\Delta \vec{v}$ is towards the centre, and $\vec{a}=\frac{\Delta \vec{v}}{\Delta t}$ (or acceleration is in the same direction as $\Delta \vec{v}$) so acceleration is towards the centre (the braaaains).
(e) Friction
2.
(a) Banking a curve means that the normal force (the road on the car) has a horizontal component. This horizontal component provides some (or all) of the centripetal acceleration for a car taking the curve. This means the friction does not need to provide as much acceleration.

In the diagram, F_{NH} can be seen to provide at least some of the centripetal acceleration.
(b) The vertical component must still be sufficient to keep the car from sinking into the road, so $F_{N_{V}}=m g$.

For the horizontal component to provide exactly all the centripetal acceleration (friction of the tyres not
needed) $F_{N_{H}}=F_{c}=m a_{c}=m \frac{v^{2}}{r}$
The total normal force is the vector sum of its components, so:

$$
\begin{aligned}
& \theta F_{N_{V}} \quad \tan \theta=\frac{F_{N_{H}}}{F_{N_{V}}} \\
& \therefore \operatorname{F}+\frac{v_{N_{H}}}{} \\
& \therefore \tan \theta=\frac{v^{2}}{m g} \\
& \therefore \tan \theta=\frac{v^{2}}{r g}
\end{aligned}
$$

