## Year 12 Physics Test Uniform Circular Motion

## 1.

(a) Circumference of circle of motion  $C = 2\pi r$ Time for one circumference is period *T* 

$$t = \frac{3}{v}$$
$$\therefore T = \frac{2\pi n}{v}$$

<sup>(b)</sup>  $T = \frac{2\pi r}{v} = \frac{2\pi \times 9.6}{1.3} = 46 \text{ s}$ 

(c) 
$$a = \frac{v^2}{r} = \frac{1.3^2}{9.6} = 0.18 \text{ ms}^{-2}$$

(d) 
$$\Delta \vec{v} = \vec{v}_B - \vec{v}_A = / - / = \Delta \vec{v}$$

 $\Delta \vec{v}$  is towards the centre, and  $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$  (or acceleration is in the same direction as  $\Delta \vec{v}$ ) so acceleration is towards the centre (the braaaains).

(e) Friction

## 2.

(a) Banking a curve means that the normal force (the road on the car) has a horizontal component. This horizontal component provides some (or all) of the centripetal acceleration for a car taking the curve. This means the friction does not need to provide as much acceleration.



In the diagram,  $F_{\rm NH}$  can be seen to provide at least some of the centripetal acceleration.

(b) The vertical component must still be sufficient to keep the car from sinking into the road, so  $F_{N_V} = mg$ . For the horizontal component to provide exactly all the centripetal acceleration (friction of the tyres not

needed)  $F_{N_H} = F_c = ma_c = m\frac{v^2}{r}$ 

The total normal force is the vector sum of its components, so:

$$F_{N_{V}} = \frac{F_{N_{H}}}{F_{N_{H}}}$$

$$tan \theta = \frac{F_{N_{H}}}{F_{N_{V}}}$$

$$\therefore tan \theta = \frac{m\frac{v^{2}}{r}}{mg}$$

$$\therefore tan \theta = \frac{v^{2}}{rg}$$