\qquad

Practice Test - Circular Motion and Gravitation

1. Using vector subtraction, show that the change in the velocity $\Delta \vec{v}$ of an object in circular motion is directed towards the centre of the circle.
2. The car below is moving on a flat road at constant speed to the left.

(a) Draw and label the two horizontal and two vertical forces acting on the car.
(b) If the car were to turn a corner of radius 112 m at a speed of $13 \mathrm{~ms}^{-1}$, calculate the magnitude of the car's acceleration.
(c) Identify the force causing the centripetal acceleration if the road is flat.
(d) Derive the equation $\tan \theta=\frac{v^{2}}{r g}$, relating the banking angle θ to the speed v of the vehicle and the radius of curvature r.
3. Consider a satellite orbiting the Earth in uniform circular motion.
(a) Identify the force causing the centripetal acceleration of the satellite.
(b) Show that the radius of a satellite orbiting the Earth can be given by the equation $r=\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}}$, where M is the mass of the Earth, T is the period of the satellite, and r is the radius of the orbit.
(c) Consider two satellites orbiting Earth. Satellite One is an equatorial-orbit satellite that orbits Earth 8 times a day. Satellite Two is a geostationary satellite.

Using proportionality, determine the ratio $r_{1}: r_{2}$ of their radii of orbit.
4.
(a) Explain why the centres of the circular orbits of Earth satellites must coincide with the centre of the Earth.
(b) Explain why low-altitude polar orbits are used in meteorology and in surveillance.

