Practice Test - Circular Motion and Gravitation

1.

2.
(a)

(b) $a=\frac{v^{2}}{r}=\frac{13^{2}}{112}=1.5 \mathrm{~ms}^{-2}$
(c) Friction
(d)

$$
\begin{aligned}
F_{N_{V}} & =\text { weight } \quad\{\text { so car doesn't sink into road }\} \\
& =m g \\
F_{N_{H}} & =\text { centripetal force \{so car doesn't rely on friction }\} \\
& =m a_{c}=\frac{m v^{2}}{r} \\
\tan \theta & =\frac{F_{N_{H}}}{F_{N_{V}}}=\frac{\frac{m v^{2}}{r}}{m g}=\frac{v^{2}}{r g}
\end{aligned}
$$

3.

(a) Gravitation
(b) $v=\frac{2 \pi r}{T} \quad$ and $\quad v=\sqrt{\frac{G M}{r}}$
$\therefore \frac{2 \pi r}{T}=\sqrt{\frac{G M}{r}}$
$\therefore \frac{4 \pi^{2} r^{2}}{T^{2}}=\frac{G M}{r}$
$\therefore r=\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}}$
(c) $T_{2}=8 T_{1}$
$r=\sqrt[3]{\frac{G M T^{2}}{4 \pi^{2}}}$
$\frac{G M}{4 \pi^{2}}$ is constant
$\therefore r \propto \sqrt[3]{T^{2}}$
$\therefore \frac{r_{1}}{r_{2}}=\frac{\sqrt[3]{T_{1}^{2}}}{\sqrt[3]{T_{2}^{2}}}=\frac{\sqrt[3]{T_{1}^{2}}}{\sqrt[3]{\left(8 T_{1}\right)^{2}}}=\frac{\sqrt[3]{T_{1}^{2}}}{\sqrt[3]{8^{2}} \sqrt[3]{T_{1}^{2}}}=\frac{1}{4}$
So $r_{1}: r_{2}=1: 4$
4.
(a) The centripetal acceleration of a satellite is provided by gravitation, which is towards the centre of mass of Earth. The centripetal force points towards the centre of the circle of motion.
(b) Low altitude: more detailed pictures

Polar orbits: survey different regions of the Earth throughout the day

