Proportionality Practice Questions

1. Consider two points A and B in the electric field produced around a point charge. The points are at radius r and $4 r$ from the charge, respectively. Using proportionality, calculate the magnitude of electric field strength at point B, given that the electric field strength at point A is $20 \mathrm{NC}^{-1}$.
2. Two moons X and Y are orbiting a planet in such a way that they are experiencing equal magnitude of force of gravitational attraction from the planet. The moons' masses are in ratio $m_{\mathrm{X}}: m_{\mathrm{Y}}=1: 2$. Calculate, using proportionality, the ratio of the radii of the moons around the planet.
3. Two satellites C and D are orbiting a planet at radii of r and $4 r$ respectively. Calculate the ratio $v_{\mathrm{C}}: v_{\mathrm{D}}$ of the satellites' orbital speeds, and $T_{\mathrm{C}}: T_{\mathrm{D}}$ of their orbital periods.

Proportionality Practice Solutions

1. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \quad \therefore E \propto \frac{1}{r^{2}} \quad$ since $\frac{1}{4 \pi \varepsilon_{0}}$ and q are constant
$\therefore \frac{E_{1}}{1 / r_{1}^{2}}=\frac{E_{2}}{1 / r_{2}{ }^{2}}$
$\therefore E_{2}=\frac{E_{1} / r_{2}{ }^{2}}{1 / r_{1}{ }^{2}}=\frac{E_{1} r_{1}^{2}}{r_{2}{ }^{2}}=\frac{20 r^{2}}{(4 r)^{2}}=\frac{20}{16}=1.25 \mathrm{NC}^{-1}$
2. Let m represent a moon mass and M represent the planet's mass
\therefore for each moon, $F=G \frac{M m}{r^{2}}$
$\therefore F r^{2}=G M m$
$\therefore r=\sqrt{\frac{G M m}{F}}$
$\therefore r \propto \sqrt{m}$ since G, M and F are constant
$\therefore \frac{r_{\mathrm{X}}}{r_{\mathrm{Y}}}=\frac{\sqrt{m_{\mathrm{X}}}}{\sqrt{m_{\mathrm{y}}}}=\frac{\sqrt{m}}{\sqrt{2 m}}=\frac{1}{\sqrt{2}}$
3. $v=\sqrt{\frac{G M}{r}}$
$\therefore v \propto \frac{1}{\sqrt{r}}$ since G and M are constant
$\therefore \frac{v_{\mathrm{C}}}{v_{\mathrm{D}}}=\frac{1 / \sqrt{r_{\mathrm{C}}}}{1 / \sqrt{r_{\mathrm{D}}}}=\frac{\sqrt{r_{\mathrm{D}}}}{\sqrt{r_{\mathrm{C}}}}=\frac{\sqrt{4 r}}{\sqrt{r}}=\sqrt{4}=2$
$\therefore v_{\mathrm{C}}: v_{\mathrm{D}}=2: 1$
$T=\frac{2 \pi r}{v}=\frac{2 \pi r}{\sqrt{\frac{G M}{r}}}=\frac{2 \pi r \sqrt{r}}{\sqrt{G M}}=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}}$
$\therefore T \propto \sqrt{r^{3}} \quad$ since G and M are constant
$\therefore \frac{T_{\mathrm{C}}}{T_{\mathrm{D}}}=\frac{\sqrt{r_{\mathrm{C}}{ }^{3}}}{\sqrt{r_{\mathrm{D}}{ }^{3}}}=\frac{\sqrt{r^{3}}}{\sqrt{(4 r)^{3}}}=\frac{1}{\sqrt{4^{3}}}=\frac{1}{8}$
$\therefore T_{\mathrm{C}}: T_{\mathrm{D}}=1: 8$
