Year 12 Physics Revision Table

Topic 6: The Motion of Charged Particles in Electric Fields

Expectation From SACE Subject Outline Note: these can be asked in converse	Summary of things I know about this (for formulae, for example, this could be: what the symbols mean, what the units of each variable is, and some possible rearrangements)	Example question(s) to practice until I can do under test conditions without help There are likely to be some in the textbook too, also take note of questions youdd like examples of from the teacher
Solve problems involving the use of $W=q \Delta V$.	Assignment Q1 (b) Test Q1 (a)	
Convert energy from joules into electron volts and vice versa.		Assignment Q1 (c) Test Q1 (b)
Derive the expression $E=\Delta V / d$ for the magnitude of the electric field (away from the edges) between two oppositely charged parallel plates a distance d apart, where ΔV is the potential difference between the plates.	Assignment Q1 (d) Test Q1 (c)	
Solve problems involving the use of $E=\Delta V / d$.	Assignment Q1 (a), Q4 (a)	
Describe the motion of a charged particle in a uniform electric		
field.		
Perform calculations involving the movement of charged particles parallel or antiparallel to a uniform electric field.		
Compare the motion of a projectile in the absence of air resistance with the motion of a charged particle in a uniform electric field.		

Calculate the time of flight and deflection of a charged particle that enters a uniform electric field at right angles to the field.		Assignment Q3
Test Q3		

Topic 7: Magnetic Fields

\(\left.\begin{array}{|l|l|l|}\hline Expectation \& Summary of things I know about this \& Example question(s) to practice until I can do

under test conditions\end{array}\right]\)| Assignment Q1 |
| :--- |
| Sketch the magnetic field lines produced by an electric current
 flowing in a straight conductor, a loop, and a solenoid. |

Topic 8: The Motion of Charged Particles in Magnetic Fields

Expectation	Summary of things I know about this	Example question(s) to practice until I can do under test conditions
Demonstrate an understanding that the magnetic force depends on both the magnitude and the direction of the velocity of the particle.		Assignment Q2
Solve problems involving the use of $F=q v B \sin \theta$.		$\begin{aligned} & \text { Assignment Q1 } \\ & \text { Test Q5 (a) } \end{aligned}$
Determine the direction of the force on a charged particle moving at any angle θ to a uniform magnetic field.		Assignment Q2
Explain how the velocity-dependence of the magnetic force on a charged particle causes the particle to move with uniform circular motion when it enters a uniform magnetic field at right angles.		Assignment Q5 (b) Test Q5 (c)
Derive $r=m v / q B$ for the radius r of the circular path of an ion of charge q and mass m that is moving with speed v at right angles to a uniform magnetic field of magnitude B.		Assignment Q3 (a) Test Q4 (a)
Solve problems involving the use of $r=m v / q B$.		Assignment Q5 (c)
Describe the nature and direction of the magnetic field needed to deflect ions into a circular path in the dees of a cyclotron.		Assignment Q3 (d)

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Derive the expression } T=2 \pi m / q B \text { for the period } T \text { of the } \\
\text { circular motion of an ion, and hence show that the period is } \\
\text { independent of the speed of the ion. }\end{array} & & \begin{array}{l}\text { Assignment Q3 (b) } \\
\text { Test Q4 (b) and (c) }\end{array} \\
\hline \begin{array}{l}\text { Using the relationships } K=1 / 2 m v^{2} \text { and } r=m v / q B \text {, derive the } \\
\text { expression } K=q^{2} B^{2} r^{2} / 2 m \text { for the kinetic energy } K \text { of the } \\
\text { ions emerging at radius } r \text { from a cyclotron. }\end{array}
$$ \& \& Assignment Q5 (d)

Test Q5 (d)\end{array}\right]\)| Use this expression to show that K is independent of the
 potential difference across the dees and, for given ions,
 depends only on the magnetic field and the radius of the
 cyclotron. |
| :--- |
| Solve problems involving the use of
 $T=2 \pi m / q B$ and $K=q^{2} B^{2} r^{2} / 2 m$. |

