Proportionality Worksheet 1

Direct Proportionality

In Physics investigations, the relationship between an *independent* variable and a *dependent* variable is determined by changing the independent and measuring the dependent.

A formula or equation often has more than two variables, and we only want to measure the effect of one variable on another – so we must keep everything else constant.

If the two variables that are changing are *directly proportional*, then changing one causes a consistent change in the other.

This is true if the equation can be written in the form y = kx where k is constant.

y is directly proportional to x can be written $y \propto x$

(The equals changes to a proportionality symbol "\approx" and the constants are removed from the equation).

If two variables are directly proportional, the graph will be a straight line through the origin:

Important note: Not every straight line graph is a direct proportionality. If the graph doesn't pass through the origin (0,0) then the relationship is called linear dependent and the equation is of the form y = mx + c

Direct proportionality examples:

- 1. If a = 3b, then $a \propto b$ because 3 is constant. The slope of the graph will be 3.
- 2. If $s = \frac{1}{3}t$, then $s \propto t$ because $\frac{1}{3}$ is constant. The slope of the graph will be $\frac{1}{3}$.
- 3. If g = Rh and R is held constant, then $g \propto h$. The slope of the graph will be R.
- 4. If $w = \frac{2nQ}{5f}$ and both *n* and *f* are held constant, then $w \propto Q$ because 2 and 5 are also constant.

The slope of the graph will be $\frac{2n}{5f}$.

Practice:

Write the proportionality relationship and the slope of the graph for each of the following:

- 1. n = 5m
- 2. $A = \frac{2}{5}B$
- 3. T = 3Lb, if b is held constant.
- 4. $d = \frac{6abc}{e}$, if b, c and e are all held constant.

Proportionality Worksheet 2

Inverse Proportionality

If the two variables that are changing are *inversely proportional*, then changing one causes the opposite change in the other, for example decreasing one increases the other.

This is true if the equation can be written in the form $y = k \frac{1}{x}$ or $y = \frac{k}{x}$ where k is constant.

y is inversely proportional to x can be written $y \propto \frac{1}{x}$

(The equals changes to a proportionality symbol "\alpha" and the constants are removed from the equation).

If two variables are inversely proportional, the graph of the two variables will have this shape:

We can't find the equation of this graph, so we need to *transform* the data into a straight line form first. y is *directly* proportional to $\frac{1}{x}$ so we graph these:

The slope of the graph is equal to k

Inverse proportionality examples:

- 1. If $a = \frac{3}{b}$, then $a \propto \frac{1}{b}$ because 3 is constant. The slope of the transformed graph will be 3.
- 2. If $w = \frac{2nQ}{5f}$ and both n and Q are held constant, then $w \propto \frac{1}{f}$ because 2 and 5 are also constant.

The slope of the transformed graph will be $\frac{2nQ}{5}$

Practice:

Write the proportionality and the slope of the transformed graph for each of the following:

1.
$$n = \frac{5}{m}$$

2. $d = \frac{6abc}{e}$, if a, b, and c are all held constant.

Proportionality Worksheet 3

Other Proportionalities

The rules we have seen so far can be applied to many relationships. Here are some more examples of equations and their proportionality. In each case k is held constant.

Equation	Proportionality
$y = kx^2$	$y \propto x^2$ "y is proportional to the square of x"
$y = \frac{k}{x^2}$	$y \propto \frac{1}{x^2}$ "y is proportional to the inverse square of x"
$y = kx^3$	$y \propto x^3$ "y is proportional to the cube of x"
$y = k\sqrt{x}$	$y \propto \sqrt{x}$ "y is proportional to the square root of x"
$y = \frac{k}{\sqrt{x}}$	$y \propto \frac{1}{\sqrt{x}}$ "y is proportional to the inverse square root of x"

For each of the following tables of data:

- 1. Plot a graph of dependent variable against independent variable to determine the likely relationship.
- 2. If the relationship is not directly proportional:
 - (a) Fill out a column with transformed values if necessary.
 - (b) Graph the transformed values.
- 3. Find the slope of the line of best fit (and hence the constant of proportionality).
- 4. Find the equation for the original data.

Cross out the middle column if you don't need it. Also, don't worry about units for this exercise.

а	b
1.0	3.1
2.0	6.3
3.0	9.4
4.0	12.6
5.0	15.7

Table 2

m		n
1.0		0.50
2.0		0.26
3.0		0.17
4.0		0.14
5.0		0.12

Table 3

i	j
1.0	2.4
2.0	8.2
3.0	18.7
4.0	32.8
5.0	50.3

Likely relationship:	Likely relationship:	Likely relationship
----------------------	----------------------	---------------------

Slope: Slope: Slope:

Equation: Equation: Equation: