Compound	Functional group	Structural formula	Condenses to	Example
alkane	N/A	H H - C - C - H H	$- CH_2 - CH_2 - or - CH_2CH_2 - $	CH ₃ CH ₂ CH ₃ prop <u>ane</u>
alkene	alkene	H - C = C - H	– CH = CH – or – CHCH –	CH ₃ CH=CH ₂ or CH ₃ CHCH ₂ prop <u>ene</u>
alkyne	alkyne	- C ≡ C -	$-C \equiv C -$ or -CC -	CH₃–C≡CH or CH₃CCH prop <u>yne</u>
alkyl halide	halogen	- F - Cl - Br - I	N/A	$\begin{array}{c} CH_3CH_2F & \underline{fluoro} \text{ ethane} \\ CH_3CH_2Cl & \underline{chloro} \text{ ethane} \\ CH_3CH_2Br & \underline{bromo} \text{ ethane} \\ CH_3CH_2I & \underline{iodo} \text{ ethane} \end{array}$
alcohol	hydroxyl	– O – H	– OH	CH ₃ CH ₂ OH ethan <u>ol</u>
aldehyde	carbonyl (at end of chain)	О - С - Н	– CHO	CH ₃ CH ₂ CHO propan <u>al</u>
ketone	carbonyl (in middle of chain)	0 - C -	- CO -	CH ₃ COCH ₃ propan <u>one</u>
carboxylic acid	carboxyl	0 - C - O - H	– COOH	CH ₃ CH ₂ COOH propan <u>oic</u> acid
carboxylate ion	carboxylate	0 - C - O-	- COO ⁻	CH ₃ CH ₂ COO ⁻ propan <u>oate</u> ion
ester	ester	0 - C - O -	- COO -	CH ₃ COOCH ₂ CH ₂ CH ₃ prop <u>yl</u> ethan <u>oate</u>
amine	amino	H - N - H	- NH ₂	CH ₃ CH ₂ NH ₂ ethan <u>amine</u>
amide	amide	O H - C - N -	– CONH –	CH ₃ CH ₂ CONH ₂ propan <u>amide</u>
benzene	benzene		N/A	methyl <u>benzene</u>

Organic Functional Groups and Nomenclature

A blank space beside a bond line means a carbon chain (alkyl group) of any length is bonded there.* In an amino group, any H in the structure shown can be replaced with an alkyl group. Structures are often drawn with bonds on angles, and often use a mixture of condensed and expanded forms. Condensed forms must be drawn backwards (e.g. H_2N - and HO-) in some cases to preserve meaning.

*In alkanes, alkenes, alkynes, aldehydes, carboxylic acids, and amides any of these can be also be a H. The bond that is part of the 'oate' in the ester can also be a H.