Step-by-step Chemical Calculations

Given the quantity of a substance and a balanced equation	SUMMARY
determine the quantity of another substance	
 Determine which quantity is <i>known</i> and which is <i>unknown</i> If <i>known</i> is a mass, calculate its molar mass <i>M</i> (using the periodic table) Calculate the number of moles for <i>known</i> Use n = m/M if <i>known</i> is a mass 	1. Calculate moles of <i>known</i>
• Use $n = C \times V$ if <i>known</i> is a concentration and volume 4. Use the balanced chemical equation to determine the mole ratio $\frac{n_{unknown}}{n_{known}}$ • Use the coefficients (balancing numbers out the front of each species)	2. Use mole ratio to determine moles of
5. Calculate the moles of <i>unknown</i> by multiplying moles of <i>known</i> by the mole ratio	unknown
6. If $unknown$ is a mass, calculate its molar mass M (using the periodic table)	
7. Calculate the quantity for <i>unknown</i> • Use $m = n \times M$ if mass is required • Use $C = \frac{n}{V}$ if concentration is required • Use $V = \frac{n}{C}$ if volume is required	3. Calculate required quantity of <i>unknown</i>

Step-by-step Chemical Calculations

Given the quantity of each reactant and the balanced equation determine the excess and limiting reactant

- 1. For the purpose of following these instructions, label the reactants A and B
- 2. Calculate the moles present of each
 - Use $n = \frac{m}{M}$ if given mass
 - Use n = CV if given concentration and volume
- 3. Use the balanced chemical equation to determine the mole ratio $\frac{n_A}{r}$
 - Use the coefficients (balancing numbers out the front of each species)
- 4. Calculate moles required of A by multiplying the moles present of B by the mole ratio
- 5. Compare moles present of A with moles required of A
 - If present is less than required, A is the limiting reactant (B is in excess) 0
 - If present is more than required, *B* is the limiting reactant (*A* is in excess) 0
 - If present is equal to required, neither reactant is in excess. 0

SUMMARY

1. Calculate moles present of each

2.

Calculate moles of one required to exactly react with the other

3.

Compare moles required with moles present