Question 10 (15 marks)

(a) (i) On the Argand diagram in Figure 8:

- mark and label a point to represent a complex number z
- hence mark and label the point representing $z+2$.

Figure 8
(1 mark)
(ii) Explain why $|z|+|z+2| \geq 2$.

(iii) Explain why the only solutions for $|z|+|z+2|=2$ are real.

(b) (i) On the Argand diagram in Figure 9:
(1) draw the set of all complex numbers z such that $|z+2|=|z|$.
(2) mark a point P, representing a complex number z such that $|z+2|=|z|$ and $\operatorname{Im}(z)>0$.
(3) mark the point Q, representing $z+2$.

Figure 9
(ii) Let $\angle P O Q=\theta$.

Show that $\frac{z}{z+2}=\operatorname{cis} \theta$.

(2 marks)

Question 10 continues on page 10.

(c) (i) Using z from part (b), and $\theta=\frac{\pi}{6}$, write $\frac{z}{z+2}$ in Cartesian form.

| |
| :--- |
| |
| |

(ii) Hence show that $z=-1+(2+\sqrt{3}) i$.

(iii) Using Figure 9 or otherwise, show that z may be written in polar form as $z=\operatorname{cosec} \frac{\pi}{12} \operatorname{cis} \frac{7 \pi}{12}$.

(2 marks)

