Question 14 (15 marks)

The complex number w is shown on the Argand diagram in Figure 14.
The dashed rays represent the complex numbers such that $\arg z=\frac{\pi}{6}, \arg z=\frac{\pi}{4}$, and $\arg z=\frac{\pi}{3}$.

Figure 14
(a) On the Argand diagram in Figure 14:
(i) draw the approximate position of w^{3}.
(ii) sketch the set of complex numbers z such that $\left|z-w^{3}\right|=|w|$.
(b) (i) Write $z=\frac{\sqrt{6}}{2}+\frac{i \sqrt{2}}{2}$ in exact polar form.

(ii) Use de Moivre's theorem to show that $z^{6}=-8$.

(c) (i) Show that the solutions of $z^{6}=-8$ are: $z_{1}=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{6}\right) ; z_{2}=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{2}\right) ; z_{3}=\sqrt{2} \operatorname{cis}\left(\frac{5 \pi}{6}\right)$; $z_{4}=\sqrt{2} \operatorname{cis}\left(-\frac{5 \pi}{6}\right) ; z_{5}=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{2}\right) ;$ and $z_{6}=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{6}\right)$.

On the Argand diagram in Figure 15, P represents z_{1}^{3} and Q represents $2 z_{1}$, where $z_{1}=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{6}\right)$.

Figure 15
(ii) On the Argand diagram in Figure 15:
(1) sketch $|z|=\sqrt{2}$.
(2) draw and label $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$, and z_{6}.
(iii) Find the exact value of $\left|z_{1}^{3}-2 z_{1}\right|$.

Circles of radius $\sqrt{2}$ are drawn with centres P and Q.
(iv) Deduce that these circles touch.

(v) Find the point where the circles touch, and write it in exact $x+i y$ form.

