QUESTION 13 (15 marks)

(a) (i) Solve $z^5 = -1$. Write your solutions in polar form.

(3 marks)

(ii) Draw the solutions on the Argand diagram in Figure 14, labelling each solution in an anticlockwise direction from z_1 to z_5 , where z_1 is the solution with the smallest positive argument.

Join your solutions labelled z_1 , z_2 , z_3 , z_4 , and z_5 to form a pentagon.

(2 marks)

(iv) Show that the perimeter of the pentagon is $10\sin\frac{\pi}{5}$.

									-							

(1 mark)

(2 marks)

Consider the solutions to $z^n = -1$ for integers $n \ge 3$.

(b) A polygon is obtained by plotting and joining the solutions of $z^n = -1$.

Let P(n) be the perimeter of this polygon.

(i) Write down an expression for P(n).

(1 mark)

(ii) State the shape of the polygon formed as $n \to \infty$.

(1 mark)

(iii) What exact value does P(n) approach as $n \to \infty$?

-																

(1 mark)

(c) Let A(n) be the area of the polygon described in part (b).

(i)	ç	Sho	w th	at A	(n)	$=\frac{n}{2}$	sin	$\frac{2\pi}{n}$	-										

(1 mark)

(ii) What exact value does A(n) approach as $n \to \infty$?

(1 mark)