QUESTION 13 (15 marks)

(a) (i) Solve $z^{5}=-1$. Write your solutions in polar form.

(ii) Draw the solutions on the Argand diagram in Figure 14, labelling each solution in an anticlockwise direction from z_{1} to z_{5}, where z_{1} is the solution with the smallest positive argument.

Figure 14
(2 marks)

Join your solutions labelled $z_{1}, z_{2}, z_{3}, z_{4}$, and z_{5} to form a pentagon.
(iii) Show that $\left|z_{1}-z_{5}\right|=2 \sin \frac{\pi}{5}$.

(iv) Show that the perimeter of the pentagon is $10 \sin \frac{\pi}{5}$.

(v) Show that the area of the pentagon is $\frac{5}{2} \sin \frac{2 \pi}{5}$.

Consider the solutions to $z^{n}=-1$ for integers $n \geq 3$.
(b) A polygon is obtained by plotting and joining the solutions of $z^{n}=-1$.

Let $P(n)$ be the perimeter of this polygon.
(i) Write down an expression for $P(n)$.

(ii) State the shape of the polygon formed as $n \rightarrow \infty$.

(1 mark)
(iii) What exact value does $P(n)$ approach as $n \rightarrow \infty$?

(c) Let $A(n)$ be the area of the polygon described in part (b).
(i) Show that $A(n)=\frac{n}{2} \sin \frac{2 \pi}{n}$.

(1 mark)
(ii) What exact value does $A(n)$ approach as $n \rightarrow \infty$?

(1 mark)

