Question $7 \quad$ (9 marks)

Figure 6 shows the graphs of $y=f(x)$ and $y=g(x)$ for $0 \leq x \leq 7$.

Figure 6

The graph of each function has exactly one stationary point; it is located at $x=2$.
(a) State the nature of the stationary point for the graph of $y=f(x)$ at $x=2$.

(b) Figure 7 shows the sign diagram for the second derivative of the function $g(x)$.

Figure 7

State the nature of the point that is located at $x=2$ on the graph of $y=g(x)$.

(c) The graph of $y=f(x)$ in Figure 6 has one point of inflection at $x=5$.

Determine the interval(s) for which $f^{\prime}(x)$ is increasing.

(1 mark)
(d) (i) For $0<x<2$, which one statement is true? Tick the appropriate box.

$$
f^{\prime}(x)<g^{\prime}(x) \square \quad f^{\prime}(x)=g^{\prime}(x) \square \quad f^{\prime}(x)>g^{\prime}(x) \square
$$

(1 mark)
(ii) For $0<x<2$, which one statement is true? Tick the appropriate box.

$$
f^{\prime \prime}(x)<g^{\prime \prime}(x) \square \quad f^{\prime \prime}(x)=g^{\prime \prime}(x) \square \quad f^{\prime \prime}(x)>g^{\prime \prime}(x) \square
$$

(iii) For $2<x<7$, given that the value of $f(x)-g(x)$ is increasing, which one statement is true? Tick the appropriate box.

$$
f^{\prime}(x)<g^{\prime}(x) \square \quad f^{\prime}(x)=g^{\prime}(x) \square \quad f^{\prime}(x)>g^{\prime}(x) \square
$$

(e) Figure 8 shows the graph of $y=f^{\prime}(x)$ for $0 \leq x \leq 7$.

On the axes in Figure 8, sketch a graph of $y=g^{\prime}(x)$ for $0 \leq x \leq 7$.

Figure 8

