Question 9 (11 marks)

Let $f(x)=\sqrt{8-x^{3}}$ for $x<2$.
(a) Show that $f^{\prime}(x)=\frac{-3 x^{2}}{2 \sqrt{8-x^{3}}}$ for $x<2$.

The graph of $y=f(x)$ is shown in Figure 9, along with the normal to the graph at $x=-1$.

Figure 9
(b) (i) Show that the normal to the graph of $y=f(x)$ at $x=-1$ has the equation $2 x-y=-5$.

(ii) State the x-intercept of the normal $2 x-y=-5$.

(c) Consider the normal to the graph of $y=f(x)$ at $x=a$, where $a<2$.
(i) Show that the x-intercept of this normal is $x=a-\frac{3}{2} a^{2}$.

(ii) Hence, using an algebraic approach, find the value of a such that the x-intercept of this normal is maximised.

