(a) (i) State the roots of the complex equation $w^{6}=1$ in $r \operatorname{cis} \theta$ form.

(2 marks)
(ii) On the Argand diagram in Figure 10, plot the roots identified in part (a)(i).

Figure 10
(2 marks)
(b) Consider the complex equation $(z-1)^{6}=1$.
(i) Using the roots identified in part (a)(i), state all the roots of the equation $(z-1)^{6}=1$, giving answers in any form.

(2 marks)
(ii) On the Argand diagram in Figure 11, plot the roots of the equation $(z-1)^{6}=1$.

Figure 11
(iii) Write the roots of $(z-1)^{6}=1$ in $r \operatorname{cis} \theta$ form or real form.

(2 marks)
(c) (i) Suppose that the polynomial $z^{2}+b z+c$ has a zero $r \operatorname{cis} \theta$, where b and c are real, and $r>0$ and $0<\theta<\pi$.
Show that $b=-2 r \cos \theta$ and $c=r^{2}$.

(2 marks)
(ii) Verify that $(z-1)^{6}=z^{6}-6 z^{5}+15 z^{4}-20 z^{3}+15 z^{2}-6 z+1$.

(d) Using part (b)(iii) and part (c), factorise $z^{6}-6 z^{5}+15 z^{4}-20 z^{3}+15 z^{2}-6 z$ into the product of real linear and real quadratic factors.

