Question 3 (7 marks)

A particular warehouse uses robotic workers initially to retrieve all products that are requested by customers. However, the probability that a robotic worker retrieves an incorrect product is 10%. A human worker is then required to retrieve the correct product.

Source: adapted from @ PhonlamaiPhoto | iStockphoto.com

- (a) Let X be the number of times, from 600 randomly selected customer requests, that a human worker is required to retrieve the correct product.
 - (i) State *one* condition that needs to be true in order for *X* to be modelled by a binomial distribution.

(1 mark)

Assume that X can be modelled by a binomial distribution.

(ii) Calculate the expected number of times, from 600 randomly selected customer requests, that a human worker will be required to retrieve the correct product.

(1 mark)

(iii) Determine the probability that, from 600 randomly selected customer requests, a human worker will be required more than 80 times to retrieve the correct product.

(2 marks)

(b) After a robotic worker has retrieved an incorrect product, a human worker always retrieves the correct product on the first attempt.

The time taken to retrieve a product is, on average:

- 7 minutes for a robotic worker
- · 12 minutes for a human worker.

Let T be the random variable that represents the *total* time taken (in minutes) to retrieve the correct product. A simple model for T is shown in the discrete probability distribution table below.

	Robotic worker retrieves correct product	Human worker retrieves correct product
Total time taken (t)	7	19
Probability $Pr(T=t)$	0.90	0.10

(i) Explain how the value of 19 in the table above was obtained, in the context of the problem.

(1 mark)

(ii) Calculate the expected value of the *total* time taken to retrieve the correct product, using the information in the table above.

(1 mark)

(c) One statistician claims that an improved model for T can be developed using a probability density function.

Justify the statistician's claim.

(1 mark)