Question 14 (16 marks)

(a) (i) Show that $\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$.

(ii) Figure 16 shows the graph of $g(x)=\sin x+\cos x$ for $-\pi \leq x \leq \pi$.

Figure 16

Explain why $g(x)$ is a function, but does not have an inverse function.

(iii) Explain why the following function does have an inverse function:

$$
f(x)=\sin x+\cos x \text { where }-\frac{3 \pi}{4} \leq x \leq \frac{\pi}{4} .
$$

(iv) Show that $f^{-1}(x)=\arcsin \left(\frac{x}{\sqrt{2}}\right)-\frac{\pi}{4}$.

(b) Figure 17 shows the graph of the inverse function $f^{-1}(x)$.

Figure 17

State the domain and range of $f^{-1}(x)$ in exact form.

(2 marks)
(c) If $y=\arcsin \left(\frac{x}{\sqrt{2}}\right)$, then $\sin y=\frac{x}{\sqrt{2}}$.

Using implicit differentiation, show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{\sqrt{2}}}{\sqrt{1-\frac{x^{2}}{2}}}
$$

Consider a wall brace leaning against a building. The bottom of the wall brace is 5 metres along the ground from the base of the building, and the top of the wall brace is 5 metres above the ground, as shown in Figure 18.

Figure 18
(d) Show that the length of the wall brace, l, is $5 \sqrt{2}$ metres.

The top of this wall brace slides down the side of the building. The top of the wall brace is now x metres above the ground, and θ is the angle of inclination of the wall brace with respect to the ground, as shown in Figure 19.
(e) (i) Show that $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\frac{1}{5 \sqrt{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t}}{\sqrt{1-\frac{x^{2}}{50}}}$.

Figure 19

(ii) If the top of the wall brace slides down the side of the building at a rate of 0.05 metres per second, at what rate is θ changing when the bottom of the wall brace is 6 metres along the ground from the base of the building?

(2 marks)

