QUESTION 10 (10 marks)

Figure 9 shows points $O\left(0,0,0\right)$, $P\left(1,\sin\theta,\cos\theta\right)$, and $Q\left(\sqrt{2},1,1\right)$. The vector $\mathbf{a}=\overrightarrow{OP}$ and the vector $\mathbf{b}=\overrightarrow{PQ}$.

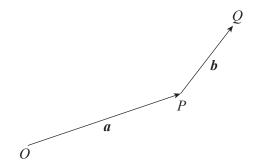


Figure 9

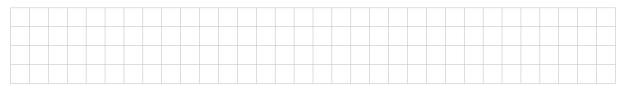
(a) (i) On Figure 9, draw and label the vector a + b.

(1 mark)

(ii) Calculate |a+b|.

(1 mark)

(b) (i) Show that $|a| + |b| = \sqrt{2} + \sqrt{6 - 2\sqrt{2} - 2(\sin\theta + \cos\theta)}$.


(3 marks)

(ii) State why $2 \le \sqrt{2} + \sqrt{6 - 2\sqrt{2} - 2(\sin\theta + \cos\theta)}$.

(1 mark)

(c) (i) State the relationship between \boldsymbol{a} and \boldsymbol{b} when $2 = \sqrt{2} + \sqrt{6 - 2\sqrt{2} - 2\left(\sin\theta + \cos\theta\right)}$.

(1 mark)

(ii) Hence find an exact value of θ for which $2 = \sqrt{2} + \sqrt{6 - 2\sqrt{2} - 2(\sin\theta + \cos\theta)}$.

(2 marks)

(iii) Hence show that $2=\sqrt{2}+\sqrt{6-4\sqrt{2}}$.

(1 mark)