QUESTION 12 (16 marks)

Consider the system of equations shown below.

$$\begin{cases} x + 2y + 2z = 4\\ 2x + y - 2z = 5\\ 3x + 2y - 2z = 8 \end{cases}$$

(a) (i) Write this system as an augmented matrix.

(1 mark)

(ii) Stating all row operations, show that this system of equations has the following solutions:

$$x = 2 + 2t$$
$$y = 1 - 2t$$
$$z = t$$

where t is a real parameter.

PLEASE TURN OVER

(b) Consider three planes in space, P_1 , P_2 and P_3 , defined by the system of equations shown below.

$$P_{1}: x + 2y + 2z = 4$$
$$P_{2}: 2x + y - 2z = 5$$
$$P_{3}: 3x + 2y - 2z = 8$$

(i) Using the information given in part (a)(ii), show that the points A(2, 1, 0) and B(0, 3, -1) are common to all three planes.

														_		
-																

(2 marks)

(ii) Show that P_1 and P_2 are perpendicular.

 													_	 	_	

(2 marks)

(c) Figure 12 shows the point C(0, 6, 2) on P_3 , the point D(12, -4, 0) on P_1 , and the line *l* through *C* and *D* intersecting P_2 at the point *E*.

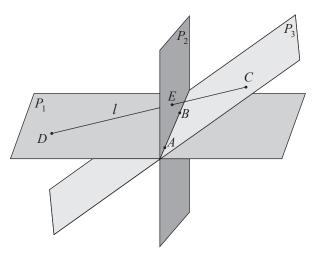
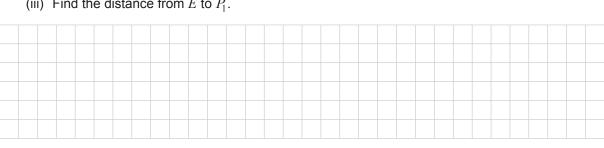


Figure 12

(i) Find, in parametric form, the equation of *l*.

(2 marks)

(2 marks)



(iii) Find the distance from E to P_1 .

(ii) Find the coordinates of *E*.

(2 marks)

(d) The equations of P_1 and P_3 are used to model two hillsides that meet at a river, as shown in Figure 13.

$$P_1: \quad x + 2y + 2z = 4 P_3: \quad 3x + 2y - 2z = 8$$

The river is modelled by the line where the two planes meet. A straight bridge, modelled by l, connects C(0, 6, 2) to D(12, -4, 0).

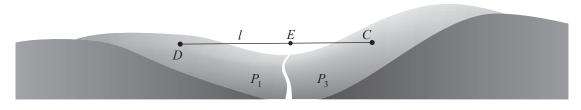


Figure 13

The point *E*, on the bridge, must be at least 1 unit from P_1 and at least 1 unit from P_3 . Does the model satisfy this condition? Show your calculations.

(2 marks)