Question 4 (9 marks)

Consider three planes in space that are defined by the following system of equations:

$$
\begin{array}{lr}
P_{1}: & x-2 y+z=4 \\
P_{2}: & x+3 y-z=0 \\
P_{3}: & 2 x-y+a z=a
\end{array}
$$

where a is a real constant.
(a) Write the system of equations in augmented matrix form.

(b) Clearly stating all row operations, show that the augmented matrix reduces to

$$
\left[\begin{array}{ccccc}
1 & -2 & 1 & : & 4 \\
0 & 5 & -2 & : & -4 \\
0 & 0 & (4-5 a) & : & (28-5 a)
\end{array}\right] .
$$

(c) (i) Solve the system of equations for $a=0$.

(ii) Solve the system of equations for $a=\frac{4}{5}$.

(1 mark)
(iii) Which one of the following figures best represents the configuration of the three planes when $a=\frac{4}{5}$? Justify your answer.

Figure 2

Figure 3

(2 marks)

