
Question 5 (9 marks)

(a) Figure 4 shows the points A(1, 2, -3), B(5, 3, -2), C(6, 7, -3), and D(2, 6, -4).

(i) Find $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

(2 marks)

(ii) Find $\cos \angle BAC$.

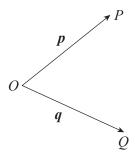
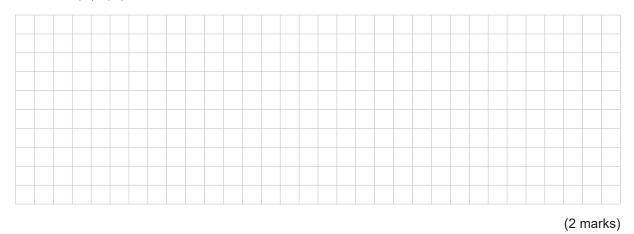
(1 mark)

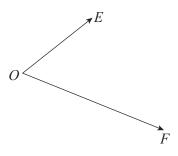
(iii) Find $\cos \angle CAD$.

		_		 												

(1 mark)

- (b) Let $\overrightarrow{OP} = p$ and $\overrightarrow{OQ} = q$.
 - (i) On Figure 5, clearly show the vector $\overrightarrow{OR} = p + q$.


Figure 5

(ii) If $|\mathbf{p}| = |\mathbf{q}|$, prove that \overrightarrow{OR} bisects $\angle POQ$.

(c) Figure 6 shows $\overrightarrow{OE} = [2, 5, -7]$ and $\overrightarrow{OF} = [10, 14, 4]$. Find a vector \overrightarrow{OG} that bisects $\angle EOF$.

