PART 2 (Questions 11 to 15) (75 marks)

Question 11 (15 marks)

(a) Calculate the vector (cross) product $[1,-1,-1] \times [1,0,1]$.

(1 mark)

(b) Consider the planes P_1 and P_2 that are defined by the following equations:

$$P_1: x - y - z = 4$$

 $P_2: x + z = 9.$

Figure 8 shows P_1 , P_2 , and the line l_1 , where P_1 and P_2 intersect.

Figure 8

(i) Show that the point X(9, 5, 0) is on both planes.

(ii) Hence or otherwise, show that l_1 has the following parametric equations:

(2 marks)

(c) Consider the line l_2 , which has the following parametric equations:

$$\begin{cases} x = 3 + 3s \\ y = -s \\ z = 3 \end{cases}$$
 where *s* is real.

(2 marks)

(1 mark)

The line l_2 lies on the plane P_3 .

Plane P_3 intersects P_1 and P_2 along the common line l_1 , as shown in Figure 9.

Figure 9

(ii) Show that the equation of P_3 is x + 3y + 7z = 24.

(3 marks)

(d) The line l_3 is parallel to l_2 , as shown in Figure 10.

Figure 10

(i) Line l_3 passes through the origin.

Write an equation for l_3 .

-																

(1 mark)

(ii) Verify that l_3 does **not** lie on P_3 .

(1 mark)

- (e) Particles are fired from a source located at the origin and travel along l_3 .
 - (i) If the particles travel at a constant speed of $\sqrt{10}$ units/second, show that the particles pass through P_1 , 1 second after they have been fired.

(2 marks)

(ii) How many more seconds elapse before the particles pass through P_2 ?
