PART 2 (Questions 11 to 15)
(75 marks)

Question 11 (15 marks)

(a) Calculate the vector (cross) product $[1,-1,-1] \times[1,0,1]$.

(b) Consider the planes P_{1} and P_{2} that are defined by the following equations:

$$
\begin{aligned}
& P_{1}: x-y-z=4 \\
& P_{2}: \quad x+z=9 .
\end{aligned}
$$

Figure 8 shows P_{1}, P_{2}, and the line l_{1}, where P_{1} and P_{2} intersect.

Figure 8
(i) Show that the point $X(9,5,0)$ is on both planes.

(ii) Hence or otherwise, show that l_{1} has the following parametric equations:

$$
\left\{\begin{array}{l}
x=9-t \\
y=5-2 t \quad \text { where } t \text { is real. } \\
z=t
\end{array}\right.
$$

(c) Consider the line l_{2}, which has the following parametric equations:

$$
\left\{\begin{array}{l}
x=3+3 s \\
y=-s \\
z=3
\end{array} \quad \text { where } s\right. \text { is real. }
$$

(i) (1) Show that l_{2} intersects l_{1}.

(2) Find Y, the point where l_{1} and l_{2} intersect.

The line l_{2} lies on the plane P_{3}.
Plane P_{3} intersects P_{1} and P_{2} along the common line l_{1}, as shown in Figure 9.

Figure 9
(ii) Show that the equation of P_{3} is $x+3 y+7 z=24$.

(3 marks)
(d) The line l_{3} is parallel to l_{2}, as shown in Figure 10.

Figure 10
(i) Line l_{3} passes through the origin.

Write an equation for l_{3}.

(ii) Verify that l_{3} does not lie on P_{3}.

(e) Particles are fired from a source located at the origin and travel along l_{3}.
(i) If the particles travel at a constant speed of $\sqrt{10}$ units/second, show that the particles pass through $P_{1}, 1$ second after they have been fired.

(ii) How many more seconds elapse before the particles pass through P_{2} ?

