## Question 3 (8 marks)

Figure 2 shows the quadrilateral *ABCD*, where  $\overrightarrow{AB} = a$ ,  $\overrightarrow{BC} = b$ , and  $\overrightarrow{CD} = c$ . The points *E*, *F*, *G*, and *H* are the midpoints of the sides *AB*, *BC*, *CD*, and *DA* respectively.



Figure 2

## (a) Find the following vectors in terms of a, b, and c.

(i)  $\overrightarrow{AD}$ 

(1 mark)

(ii)  $\overrightarrow{EF}$ 

|  | <br> |  |  |  | <br> |  |  |  | <br> | <br> | <br> |  | <br> | <br> |  |
|--|------|--|--|--|------|--|--|--|------|------|------|--|------|------|--|
|  | <br> |  |  |  |      |  |  |  |      |      |      |  |      |      |  |
|  |      |  |  |  |      |  |  |  |      |      |      |  |      |      |  |

(1 mark)

(iii)  $\overrightarrow{HG}$ 

|  |  |  |  |  |  |  |  |  |  |  |  |  | _ |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |

(2 marks)

## (b) (i) Explain why *EFGH* is a parallelogram.

(2 marks)

(ii) Show that the area of *EFGH* is 
$$\frac{1}{4} | (a \times b) + (a \times c) + (b \times c) |$$
.



(2 marks)