Question 8 (15 marks)

(a) Consider the planes P_{1} and P_{2} that are defined by the equations below.

$$
\begin{aligned}
& P_{1}: x+y+2 z=4 \\
& P_{2}: 2 x-y+z=8
\end{aligned}
$$

(i) Show that P_{1} and P_{2} intersect at line l_{1}, which has the following parametric equations:

$$
\left\{\begin{array}{l}
x=4-t \\
y=-t \\
z=t
\end{array} \quad \text { where } t\right. \text { is a real parameter. }
$$

Clearly state all row operations.

(ii) Show that the points $A(0,-4,4)$ and $B(1,-3,3)$ are on l_{1}.

(iii) Show that the point $C(4,2,2)$ is on P_{2}.

(b) Figure 6 shows P_{1} and P_{2}, and the line l_{1} where P_{1} and P_{2} intersect.

The normal to P_{2} through C meets P_{1} at the point D.

Figure 6
(i) Find the equation of the normal to P_{2} through C.

(ii) Show that D has coordinates $(0,4,0)$.

(2 marks)
(iii) From part (a)(i), the parametric equations for l_{1} are:

$$
\left\{\begin{array}{l}
x=4-t \\
y=-t \\
z=t
\end{array} \quad \text { where } t\right. \text { is a real parameter. }
$$

Find the coordinates of the point on l_{1} that is closest to $D(0,4,0)$.

(iv) How much closer is D to P_{2} than it is to l_{1} ?

Figure 7

