Question 8 (15 marks)

(a) Consider the planes $P_{\!1}\,{\rm and}\,P_{\!2}$ that are defined by the equations below.

$$P_1: x + y + 2z = 4 P_2: 2x - y + z = 8$$

(i) Show that P_1 and P_2 intersect at line l_1 , which has the following parametric equations:

$$\begin{cases} x = 4 - t \\ y = -t \\ z = t \end{cases}$$
 where *t* is a real parameter.

Clearly state all row operations.

(3 marks)

(ii) Show that the points A(0, -4, 4) and B(1, -3, 3) are on l_1 .

(2 marks)

(iii) Show that the point C(4, 2, 2) is on P_2 .

(b) Figure 6 shows P_1 and P_2 , and the line l_1 where P_1 and P_2 intersect. The normal to P_2 through *C* meets P_1 at the point *D*.

Figure 6

(i) Find the equation of the normal to P_2 through *C*.

(2 marks)

(ii) Show that D has coordinates (0, 4, 0).

(2 marks)

(iii) From part (a)(i), the parametric equations for l_1 are:

$$\begin{cases} x = 4 - t \\ y = -t \\ z = t \end{cases}$$
 where *t* is a real parameter.

Find the coordinates of the point on l_1 that is closest to D(0, 4, 0).

(3 marks)

(iv) How much closer is D to P_2 than it is to l_1 ?

