Question 8 (15 marks)

Consider the planes P_1 and P_2 that are defined by the equations below.

$$P_1: 2x + y - z = 1 P_2: 2x + 3y - z = 7$$

(a) (i) Clearly stating all row operations, show that P_1 and P_2 intersect at l_1 , which has the following parametric equations:

$$\begin{cases} x = t \\ y = 3 \\ z = 2 + 2t \end{cases}$$
 where *t* is a real parameter.

(3 marks)

(ii) Show that the points A(0, 3, 2) and B(4, 3, 10) are on l_1 .

(1 mark)

(iii) The plane P_3 is defined by the following equation: 4x + 3y - 2z = 63. Show that l_1 is parallel to P_3 .

(2 marks)

- (b) From part (a)(iii), the equation for P_3 is: 4x + 3y 2z = 63. Point Q (10, 9, 2) is on P_3 .
 - (i) The line l_2 is normal to P_3 through Q.

Find the equation of l_2 .

(2 marks)

(ii) Show that l_2 meets l_1 at *C*, where *C* is the midpoint of *AB*.

(3 marks)

(2 marks)

The line l_2 meets the plane $P_4: 4x + 3y - 2z = -63$ at *T*, as shown in Figure 6.

(c) Tick the appropriate box to complete the following statement: The area of triangle ABT is

Justify your answer.

(2 marks)