Question 8

Consider the planes P_{1} and P_{2} that are defined by the equations below.

$$
\begin{aligned}
& P_{1}: 2 x+y-z=1 \\
& P_{2}: 2 x+3 y-z=7
\end{aligned}
$$

(a) (i) Clearly stating all row operations, show that P_{1} and P_{2} intersect at l_{1}, which has the following parametric equations:

$$
\left\{\begin{array}{l}
x=t \\
y=3 \\
z=2+2 t
\end{array} \quad \text { where } t\right. \text { is a real parameter. }
$$

(ii) Show that the points $A(0,3,2)$ and $B(4,3,10)$ are on l_{1}.

(iii) The plane P_{3} is defined by the following equation: $4 x+3 y-2 z=63$.

Show that l_{1} is parallel to P_{3}.

(b) From part (a)(iii), the equation for P_{3} is: $4 x+3 y-2 z=63$.

Point $Q(10,9,2)$ is on P_{3}.
(i) The line l_{2} is normal to P_{3} through Q.

Find the equation of l_{2}.

(ii) Show that l_{2} meets l_{1} at C, where C is the midpoint of $A B$.

(iii) Find the distance from l_{1} to P_{3}.

The line l_{2} meets the plane $P_{4}: 4 x+3 y-2 z=-63$ at T, as shown in Figure 6.

Figure 6
(c) Tick the appropriate box to complete the following statement:

The area of triangle $A B T$ is
\square less than the area of triangle $A B Q$.
\square the same as the area of triangle $A B Q$.
\square greater than the area of triangle $A B Q$.
Justify your answer.

(2 marks)

