	INTEGRATION TECHNIQUES AND APPLICATIONS


KEY FACTS AND CONCEPTS
7A RULES FOR INTEGRATION
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7C INTEGRATION BY SUBSTITUTION
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7D INTEGRATION BY PARTS
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7E THE AREA BETWEEN TWO FUNCTIONS
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7F SOLIDS OF REVOLUTION
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DEFINITE INTEGRALS INVOLVING SUBSTITUTION

When we evaluate a definite integral using substitution, we need to make sure the endpoints are
converted to the new variable.
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If two functions f(z) and g(x) intersect at
z=a and z =05, and f(z) > g(z) for
all a < x < b, then the area of the shaded
region between their points of intersection
is given by

b
A= [ @) - g@) .
a
Alternatively, if the upper and lower

functions are y = y, and y = y,
respectively, then the area is

b
A=/ [y —y.]dz.

y=f(z) or y=yu

a b T
/ y=g(z) or y=y,
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The area between the functions f(z) and g(x) on the interval a <

A= /If(z

g(z)| dx.

T <

b is
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When the region enclosed by y = f(x), the z-axis,
and the vertical lines = a and = = b is revolved
through 27 about the z-axis to generate a solid, the
volume of the solid is given by

b
Volume of revolution = 7 / y?dx.

a
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When the region enclosed by y = f(z), the
y-axis, and the horizontal lines y = f(a) = ¢ and
y = f(b) = d is revolved through 27 about the
y-axis to generate a solid, the volume of the solid is
given by

d
Volume of revolution = 7 / x?2dy.
c
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Suppose yr = f(x) and yr = g(z), where f(z) > g(z) forall a <z <b.

If the region bounded by the upper function y,, = f(z)
and the lower function y, = g(x), and the lines = = a,
x = b is revolved about the x-axis, then its volume of ~—
revolution is given by:

y

y=[(z) or yu

y=g(x) oryr
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Integrals involving sin®(az+b) and cos?(az+b) can be found
by first using the identities

sin?0 =1 —1cos20 or cos?0 =%+ cos26.
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